Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(46): e2310126120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934824

RESUMO

PIN-FORMEDs (PINs) are auxin efflux carriers that asymmetrically target the plasma membrane (PM) and are critical for forming local auxin gradients and auxin responses. While the cytoplasmic hydrophilic loop domain of PIN (PIN-HL) is known to include some molecular cues (e.g., phosphorylation) for the modulation of PIN's intracellular trafficking and activity, the complexity of auxin responses suggests that additional regulatory modules may operate in the PIN-HL domain. Here, we have identified and characterized a PIN-HL-interacting protein (PIP) called FORMATION OF APLOID AND BINUCLEATE CELL 1C (FAB1C), a phosphatidylinositol-3-phosphate 5-kinase, which modulates PIN's lytic trafficking. FAB1C directly interacts with PIN-HL and is required for the polarity establishment and vacuolar trafficking of PINs. Unphosphorylated forms of PIN2 interact more readily with FAB1C and are more susceptible to vacuolar lytic trafficking compared to phosphorylated forms. FAB1C also affected lateral root formation by modulating the abundance of periclinally localized PIN1 and auxin maximum in the growing lateral root primordium. These findings suggest that a membrane-lipid modifier can target the cargo-including vesicle by directly interacting with the cargo and modulate its trafficking depending on the cargo's phosphorylation status.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...