Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Med Sci Sports Exerc ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38875487

RESUMO

INTRODUCTION: Increases in skeletal muscle size occur in response to prolonged exposure to resistance training that is typically ascribed to increased muscle fibre size. Whether muscle fibre number also changes remains controversial, and a paucity of data exists about myofibrillar structure. This cross-sectional study compared muscle fibre and myofibril characteristics in long-term resistance-trained (LRT) versus untrained (UNT) individuals. METHODS: The maximal anatomical cross-sectional area (ACSAmax) of the biceps brachii muscle was measured by MRI in 16 LRT (5.9 ± 3.5 years' experience) and 13 UNT males. A muscle biopsy was taken from the biceps brachii to measure muscle fibre area, myofibril area and myosin spacing. Muscle fibre number, myofibril number in total and per fibre were estimated by dividing ACSAmax by muscle fibre area or myofibril area, and muscle fibre area by myofibril area, respectively. RESULTS: Compared to UNT, LRT individuals had greater ACSAmax (+70%, P < 0.001), fibre area (+29%, P = 0.028), fibre number (+34%, P = 0.013), and myofibril number per fibre (+49%, P = 0.034) and in total (+105%, P < 0.001). LRT individuals also had smaller myosin spacing (-7%, P = 0.004; i.e. greater packing density) and a tendency towards smaller myofibril area (-16%, P = 0.074). ACSAmax was positively correlated with fibre area ( r = 0.526), fibre number ( r = 0.445) and myofibril number (in total r = 0.873 and per fibre r = 0.566), and negatively correlated with myofibril area ( r = -0.456) and myosin spacing ( r = -0.382) (all P < 0.05). CONCLUSIONS: The larger muscles of LRT individuals exhibited more fibres in cross-section and larger muscle fibres, which contained substantially more total myofibrils and more packed myofilaments than UNT participants, suggesting plasticity of muscle ultrastructure.

2.
Med Sci Sports Exerc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38857522

RESUMO

INTRODUCTION: The hamstring muscles play a crucial role in sprint running, but are also highly susceptible to strain injuries, particularly within the biceps femoris long head (BFlh). This study compared the adaptations in muscle size and strength of the knee flexors, as well as BFlh muscle and aponeurosis size, after two eccentrically focused knee flexion training regimes: Nordic hamstring training (NHT) or lengthened state eccentric training (LSET, isoinertial weight-stack resistance in an accentuated hip-flexed position), to habitual activity (no training controls: CON). METHODS: 42 healthy young males completed 34 sessions of NHT or LSET over 12 weeks or served as CON (n = 14/group). MRI-measured muscle volume of seven individual knee flexors and BFlh aponeurosis area, and maximum knee flexion torque during eccentric, concentric and isometric contractions were assessed pre- and post-training. RESULTS: LSET induced greater increases in hamstrings (+18% vs +11%) and BFlh (+19% vs +5%) muscle volumes and BFlh aponeurosis area (+9% vs +3%) than NHT (all P ≤ 0.001), with no changes after CON. There were distinctly different patterns of hypertrophy between the two training regimes, largely due to the functional role of the muscles; LSET was more effective for increasing the size of knee flexors that also extend the hip (2.2-fold vs NHT), whereas NHT increased the size of knee flexors that do not extend the hip (1.9-fold vs LSET; both P ≤ 0.001). Changes in maximum eccentric torque differed only between LSET and CON (+17% vs +4%; P = 0.009), with NHT (+11%) in-between. CONCLUSIONS: These results suggest that LSET is superior to NHT in inducing overall hamstrings and BFlh hypertrophy, potentially contributing to better sprint performance improvements and protection against hamstring strain injuries than NHT.

3.
J Appl Physiol (1985) ; 136(6): 1568-1579, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38660724

RESUMO

There is a marked difference between males and females in sprint running performance, yet a comprehensive investigation of sex differences in the muscle morphology of sprinters, which could explain the performance differences, remains to be completed. This study compared muscle volumes of 23 individual leg muscles and 5 functional muscle groups, assessed with 3 T magnetic resonance imaging, between male (n = 31) and female (n = 22) sprinters, as well as subgroups of elite males (EM, n = 5), elite females (EF, n = 5), and performance-matched (to elite females) males (PMMEF, n = 6). Differences in muscle volume distribution between EM, EF, and unathletic male (UM) controls were also assessed. For the full cohorts, male sprinters were more muscular than their female counterparts, but the differences were nonuniform and anatomically variable, with the largest differences in the hip extensors and flexors. However, among elite sprinters the sex differences in the volume of the functional muscle groups were almost uniform (absolute volume +47-53%), and the muscle volume distribution of EM was more similar to EF than to UM (P < 0.039). For PMMEF, relative hip extensor volume, but not stature or percent body fat, differentiated for performance (PMMEF and EF < EM) rather than sex. In conclusion, although the full cohorts of sprinters showed a marked sex difference in the amount and distribution of muscle mass, elite sprinters appeared to be selected for a common muscle distribution phenotype that for these elite subgroups was a stronger effect than that of sex. Relative hip extensor muscle volume, rather than stature, percent body fat, or total relative muscle volume, appeared to be the primary determinant of the sex difference in performance.NEW & NOTEWORTHY We present novel evidence suggesting muscle volume, specifically relative hip extensor volume, may be a primary deterministic variable for the sex difference in sprint performance, such that with matched sprint times, male and female sprinters may be expected to have equivalent muscle morphology. We highlight striking similarities in distribution of leg muscle mass between elite male and female sprinters and provide evidence for the existence of a muscular distribution phenotype specific to elite sprinters, irrespective of sex.


Assuntos
Músculo Esquelético , Corrida , Caracteres Sexuais , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Corrida/fisiologia , Adulto Jovem , Adulto , Imageamento por Ressonância Magnética/métodos , Atletas , Desempenho Atlético/fisiologia , Perna (Membro)/fisiologia , Perna (Membro)/anatomia & histologia , Fatores Sexuais
4.
Gait Posture ; 108: 139-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052123

RESUMO

BACKGROUND: Minimizing postural sway during tiptoe standing is essential for ballet dancers. Investigation of the activity of the plantar intrinsic foot muscles (PIFMs) may provide insight into postural sway in dancers. Herein, we compared PIFM activity during tiptoe standing between dancers and non-dancers and examined its relationship with postural sway. METHODS: We enrolled 14 female ballet dancers and 13 female non-dancers. Electromyography (EMG) amplitudes of 64 channels of PIFMs and center of pressure (COP) data were recorded during bipedal tiptoe standing tasks performed with ankle plantarflexion angles of 20°, 40°, and 60° (dancers only). The EMG amplitudes were normalized to those during the maximum voluntary contraction, and the muscle activity level and its coefficient of variation over time (EMG-CVtime) during the task were assessed. Standard deviations in the anteroposterior and mediolateral directions, velocity, and area were calculated from the COP data. RESULTS: Most COP and EMG variables were significantly lower in dancers than in non-dancers in both the 20° and 40° tasks (p < 0.05). Significant correlations were found between most combinations of the COP and EMG variables in both the 20° and 40° tasks in the whole cohort (r = 0.468-0.807, p ≤ 0.014). In the 60° task in dancers, COP velocity was strongly correlated with EMG-CVtime (r = 0.700, p = 0.005). CONCLUSION: These results provide novel evidence that the PIFMs do not require high activity, but rather that its low, steady activity is the key, to achieve less postural sway during bipedal tiptoe standing in dancers.


Assuntos
Dança , Postura , Humanos , Feminino , Postura/fisiologia , Dança/fisiologia , Pé/fisiologia , Músculo Esquelético/fisiologia , Extremidade Inferior , Equilíbrio Postural/fisiologia
5.
Front Physiol ; 14: 1272106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156065

RESUMO

Background: The triceps surae muscle plays important roles in fundamental human movements. However, this muscle is relatively unresponsive to resistance training (difficult to hypertrophy) but prone to atrophy with inactivity compared with other muscles. Thus, identifying an effective training modality for the triceps surae is warranted. This study compared triceps surae muscle hypertrophy after standing/knee-extended versus seated/knee-flexed plantarflexion (calf-raise) training, where the gastrocnemius is lengthened and shortened, respectively. Methods: Fourteen untrained adults conducted calf-raise training with one leg in a standing/knee-extended position and the other leg in a seated/knee 90°-flexed position at 70% of one-repetition maximum. Each leg performed 10 repetitions/set, 5 sets/session, 2 sessions/week for 12 weeks. Before and after the intervention, magnetic resonance imaging scans were obtained to assess muscle volume of each and the whole triceps surae. Results: Muscle volume significantly increased in all three muscles and the whole triceps surae for both legs (p ≤ 0.031), except for the gastrocnemius muscles of the seated condition leg (p = 0.147-0.508). The changes in muscle volume were significantly greater for the standing than seated condition leg in the lateral gastrocnemius (12.4% vs. 1.7%), medial gastrocnemius (9.2% vs. 0.6%), and whole triceps surae (5.6% vs. 2.1%) (p ≤ 0.011), but similar between legs in the soleus (2.1% vs. 2.9%, p = 0.410). Conclusion: Standing calf-raise was by far more effective, therefore recommended, than seated calf-raise for inducing muscle hypertrophy of the gastrocnemius and consequently the whole triceps surae. This result and similar between-condition hypertrophy in the soleus collectively suggest that training at long muscle lengths promotes muscle hypertrophy.

6.
J Foot Ankle Res ; 16(1): 75, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950300

RESUMO

BACKGROUND: Plantar intrinsic foot muscles (PIFMs) are composed of 10 muscles and play an essential role in achieving functional diversity in the foot. Previous studies have identified that the morphological profiles of PIFMs vary between individuals. The morphological profiles of a muscle theoretically reflect its output potentials: the physiological cross-sectional area (PCSA) of a muscle is proportional to its maximum force generation, and the muscle fiber length (FL) is its shortening velocity. This implies that the PCSA and FL may be useful variables for characterizing the functional diversity of the individual PIFM. The purpose of this study was to examine how individual PIFMs can be classified based on their PCSA and FL. METHODS: In 26 healthy young adult males, the muscle volume and muscle length of seven PIFMs (abductor hallucis, ABDH; abductor digiti minimi, ABDM; adductor hallucis oblique head, ADDH-OH; ADDH transverse head, ADDH-TH; flexor digitorum brevis, FDB; flexor hallucis brevis, FHB; quadratus plantae, QP) were measured using magnetic resonance imaging. The PCSA and FL of each of the seven PIFMs were then estimated by combining the data measured from the participants and those of muscle architectural parameters documented from cadavers in previous studies. A total of 182 data samples (26 participants × 7 muscles) were classified into clusters using k-means cluster analysis. The optimal number of clusters was evaluated using the elbow method. RESULTS: The data samples of PIFMs were assigned to four clusters with different morphological profiles: ADDH-OH and FHB, characterised by large PCSA and short FL (high force generation and slow shortening velocity potentials); ABDM and FDB, moderate PCSA and moderate FL (moderate force generation and moderate shortening velocity potentials); QP, moderate PCSA and long FL (moderate force generation and rapid shortening velocity potentials); ADDH-TH, small PCSA and moderate FL (low force generation and moderate shortening velocity potentials). ABDH components were assigned equivalently to the first and second clusters. CONCLUSIONS: The approach adopted in this study may provide a novel perspective for interpreting the PIFMs' function based on their maximal force generation and shortening velocity potentials.


Assuntos
, Músculo Esquelético , Masculino , Humanos , Adulto Jovem , Músculo Esquelético/fisiologia , Pé/fisiologia , Fibras Musculares Esqueléticas
7.
J Physiol ; 601(10): 1831-1850, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929484

RESUMO

Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2  = 0.66) and cross-sectional area (R2  = 0.65) from conduction velocity estimates with low systematic bias (∼2% and ∼4% respectively) and a relatively low margin of individual error (∼8% and ∼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. KEY POINTS: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.


Assuntos
Fibras Musculares Esqueléticas , Condução Nervosa , Criança , Humanos , Eletromiografia/métodos , Condução Nervosa/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologia
8.
Eur J Sport Sci ; 23(7): 1240-1250, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819335

RESUMO

The biarticular triceps brachii long head (TBLong) is lengthened more in the overhead than neutral arm position. We compared triceps brachii hypertrophy after elbow extension training performed in the overhead vs. neutral arm position. Using a cable machine, 21 adults conducted elbow extensions (90-0°) with one arm in the overhead (Overhead-Arm) and the other arm in the neutral (Neutral-Arm) position at 70% one-repetition maximum (1RM), 10 reps/set, 5 sets/session, 2 sessions/week for 12 weeks. Training load was gradually increased (+5% 1RM/session) when the preceding session was completed without repetition failure. 1RM of the assigned condition and MRI-measured muscle volume of the TBLong, monoarticular lateral and medial heads (TBLat+Med), and whole triceps brachii (Whole-TB) were assessed pre- and post-training. Training load and 1RM increased in both arms similarly (+62-71% at post, P = 0.285), while their absolute values/weights were always lower in Overhead-Arm (-34-39%, P < 0.001). Changes in muscle volume in Overhead-Arm compared to Neutral-Arm were 1.5-fold greater for the TBLong (+28.5% vs. +19.6%, Cohen's d = 0.61, P < 0.001), 1.4-fold greater for the TBLat+Med (+14.6% vs. +10.5%, d = 0.39, P = 0.002), and 1.4-fold greater for the Whole-TB (+19.9% vs. +13.9%, d = 0.54, P < 0.001). In conclusion, triceps brachii hypertrophy was substantially greater after elbow extension training performed in the overhead versus neutral arm position, even with lower absolute loads used during the training.HighlightsGrowing evidence suggests that resistance training at long muscle lengths promotes muscle hypertrophy, but its practical applications are yet to be explored.Triceps brachii muscle hypertrophy was substantially greater after cable elbow extension training performed in the overhead than neutral arm position, particularly in the biarticular triceps brachii long head, even with lower absolute loads lifted (i.e. lower mechanical stress to muscles/joints).Cable elbow extension training should be performed in the overhead rather than neutral arm position if one aims to maximise muscle hypertrophy of the triceps brachii or to prevent atrophy of this muscle.


Assuntos
Articulação do Cotovelo , Treinamento Resistido , Adulto , Humanos , Cotovelo/fisiologia , Articulação do Cotovelo/fisiologia , Músculo Esquelético/fisiologia , Hipertrofia
9.
Sports Med Open ; 8(1): 138, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370207

RESUMO

BACKGROUND: As an adjunct to running training, heavy resistance and plyometric training have recently drawn attention as potential training modalities that improve running economy and running time trial performance. However, the comparative effectiveness is unknown. The present systematic review and meta-analysis aimed to determine if there are different effects of heavy resistance training versus plyometric training as an adjunct to running training on running economy and running time trial performance in long-distance runners. METHODS: Electronic databases of PubMed, Web of Science, and SPORTDiscus were searched. Twenty-two studies completely satisfied the selection criteria. Data on running economy and running time trial performance were extracted for the meta-analysis. Subgroup analyses were performed with selected potential moderators. RESULTS: The pooled effect size for running economy in heavy resistance training was greater (g = - 0.32 [95% confidence intervals [CIs] - 0.55 to - 0.10]: effect size = small) than that in plyometric training (g = -0.13 [95% CIs - 0.47 to 0.21]: trivial). The effect on running time trial performance was also larger in heavy resistance training (g = - 0.24 [95% CIs - 1.04 to - 0.55]: small) than that in plyometric training (g = - 0.17 [95% CIs - 0.27 to - 0.06]: trivial). Heavy resistance training with nearly maximal loads (≥ 90% of 1 repetition maximum [1RM], g = - 0.31 [95% CIs - 0.61 to - 0.02]: small) provided greater effects than those with lower loads (< 90% 1RM, g = - 0.17 [95% CIs - 1.05 to 0.70]: trivial). Greater effects were evident when training was performed for a longer period in both heavy resistance (10-14 weeks, g = - 0.45 [95% CIs - 0.83 to - 0.08]: small vs. 6-8 weeks, g = - 0.21 [95% CIs - 0.56 to 0.15]: small) and plyometric training (8-10 weeks, g = 0.26 [95% CIs - 0.67 to 0.15]: small vs. 4-6 weeks, g = - 0.06 [95% CIs 0.67 to 0.55]: trivial). CONCLUSIONS: Heavy resistance training, especially with nearly maximal loads, may be superior to plyometric training in improving running economy and running time trial performance. In addition, running economy appears to be improved better when training is performed for a longer period in both heavy resistance and plyometric training.

10.
Med Sci Sports Exerc ; 54(12): 2138-2148, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170567

RESUMO

INTRODUCTION: A paucity of research exists examining the importance of muscle morphological and functional characteristics for elite female sprint performance. PURPOSE: This study aimed to compare lower body muscle volumes and vertical jumping power between elite and subelite female sprinters and assess the relationships of these characteristics with sprint race and acceleration performance. METHODS: Five elite (100 m seasons best [SBE 100 ], 11.16 ± 0.06 s) and 17 subelite (SBE 100 , 11.84 ± 0.42 s) female sprinters underwent: 3T magnetic resonance imaging to determine the volume of 23 individual leg muscles/compartments and five functional muscle groups; countermovement jump and 30 m acceleration tests. RESULTS: Total absolute lower body muscle volume was higher in elite versus subelite sprinters (+15%). Elite females exhibited greater muscle volume of the hip flexors (absolute, +28%; relative [to body mass], +19%), hip extensors (absolute, +22%; relative, +14%), and knee extensors (absolute, +21%), demonstrating pronounced anatomically specific muscularity, with relative hip flexor volume alone explaining 48% of sprint performance variability. The relative volume of five individual muscles (sartorius, gluteus maximus, adductor magnus, vastus lateralis, illiopsoas) were both distinct between groups (elite > subelite) and related to SBE 100 ( r = 0.553-0.639), with the combination of the sartorius (41%) and the adductor magnus (17%) explaining 58% of the variance in SBE 100 . Elite female sprinters demonstrated greater absolute countermovement jump power versus subelite, and absolute and relative power were related to both SBE 100 ( r = -0.520 to -0.741) and acceleration performance ( r = 0.569 to 0.808). CONCLUSIONS: This investigation illustrates the distinctive, anatomically specific muscle volume distribution that facilitates elite sprint running in females, and emphasizes the importance of hip flexor and extensor relative muscle volume.


Assuntos
Desempenho Atlético , Corrida , Humanos , Feminino , Corrida/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Perna (Membro) , Extremidade Inferior/fisiologia , Desempenho Atlético/fisiologia
11.
J Anat ; 241(6): 1336-1343, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001459

RESUMO

Human plantar intrinsic foot muscles consist of 10 muscles that originate and insert within the sole of the foot. It is known that the anatomical cross-sectional area (ACSA) and muscle thickness of two plantar intrinsic foot muscles, the flexor hallucis brevis (FHB) and abductor hallucis (ABH), associate with morphological parameters of the foot, such as total and truncated foot length and navicular height. However, it is unclear how the size for each of the plantar intrinsic foot muscles associates with various morphological profiles of the foot. This study aimed to elucidate this subject. By using magnetic resonance imaging (MRI), serial images of the right foot were obtained in 13 young adult men without foot deformities. From the obtained MR images, ACSA for each of the individual plantar intrinsic foot muscles was analyzed along the foot length, and then its muscle volume (MV) was calculated. The analyzed muscles were the abductor digiti minimi (ABDM), ABH, adductor hallucis oblique head (ADDH-OH), adductor hallucis transverse head (ADDH-TH), flexor digitorum brevis (FDB), FHB, and quadratus plantae (QP). Furthermore, MV of the whole plantar intrinsic foot muscle (WHOLE) was defined as the total MVs of all the analyzed muscles. As morphological parameters, total foot length, truncated foot length, forefoot width, ball circumference, instep circumference, navicular height, great toe eversion angle, and little toe inversion angle were measured using a laser three-dimensional foot scanner in standing and sitting conditions. In addition, navicular drop (ND) and normalized truncated navicular height (NTNH) were also calculated as medial longitudinal arch (MLA) height indices. The MV of WHOLE was significantly associated with the forefoot width, ball circumference, and instep circumference (r = 0.647-0.711, p = 0.006-0.013). Positive correlations were found between the forefoot width and MV of FHB, FDB, and QP (r = 0.564-0.653, p = 0.015-0.045), between the ball circumference and MV of QP (r = 0.559, p = 0.047), between the instep circumference and MV of FHB (r = 0.609, p = 0.027), and between the little toe inversion angle and MV of QP (r = 0.570, p = 0.042). The MVs of ABH, ABDM, and ADDH-OH were not significantly correlated with any morphological parameters of the foot. Similarly, no significant correlations were found between MV of each muscle and either of the MLA height indices (ND and NTNH). Thus, the current results indicate that forefoot width and circumferential parameters (instep and ball circumference), not MLA height, associate with the size of the whole plantar intrinsic foot muscles, especially those specialized in toe flexion (FHB, FDB, and QP).


Assuntos
, Músculo Esquelético , Masculino , Adulto Jovem , Humanos , Pé/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Dedos do Pé , Posição Ortostática
12.
J Neural Eng ; 19(4)2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853438

RESUMO

Objective.High-density surface electromyography (HD-sEMG) allows the reliable identification of individual motor unit (MU) action potentials. Despite the accuracy in decomposition, there is a large variability in the number of identified MUs across individuals and exerted forces. Here we present a systematic investigation of the anatomical and neural factors that determine this variability.Approach. We investigated factors of influence on HD-sEMG decomposition, such as synchronization of MU discharges, distribution of MU territories, muscle-electrode distance (MED-subcutaneous adipose tissue thickness), maximum anatomical cross-sectional area (ACSAmax), and fiber cross-sectional area. For this purpose, we recorded HD-sEMG signals, ultrasound and magnetic resonance images, and took a muscle biopsy from the biceps brachii muscle from 30 male participants drawn from two groups to ensure variability within the factors-untrained-controls (UT = 14) and strength-trained individuals (ST = 16). Participants performed isometric ramp contractions with elbow flexors (at 15%, 35%, 50% and 70% maximum voluntary torque-MVT). We assessed the correlation between the number of accurately detected MUs by HD-sEMG decomposition and each measured parameter, for each target force level. Multiple regression analysis was then applied.Main results.ST subjects showed lower MED (UT = 5.1 ± 1.4 mm; ST = 3.8 ± 0.8 mm) and a greater number of identified MUs (UT: 21.3 ± 10.2 vs ST: 29.2 ± 11.8 MUs/subject across all force levels). The entire cohort showed a negative correlation between MED and the number of identified MUs at low forces (r= -0.6,p= 0.002 at 15% MVT). Moreover, the number of identified MUs was positively correlated to the distribution of MU territories (r= 0.56,p= 0.01) and ACSAmax(r= 0.48,p= 0.03) at 15% MVT. By accounting for all anatomical parameters, we were able to partly predict the number of decomposed MUs at low but not at high forces.Significance.Our results confirmed the influence of subcutaneous tissue on the quality of HD-sEMG signals and demonstrated that MU spatial distribution and ACSAmaxare also relevant parameters of influence for current decomposition algorithms.


Assuntos
Contração Isométrica , Músculo Esquelético , Braço/fisiologia , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Masculino , Músculo Esquelético/fisiologia , Torque
13.
Nutrition ; 97: 111607, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231855

RESUMO

OBJECTIVE: The aim of this study was to observe the relationship of protein intake at each meal and daily total with change in lean tissue mass with progressive resistance exercise training (RET) in healthy middle-aged women. METHODS: Twenty-two healthy Japanese women were recruited from Shiga Prefecture, Japan, and a supervised whole body RET program was conducted twice a week for 16 wk. The dietary intake was assessed using 3-d dietary records. Dual-energy x-ray absorptiometry was used to measure the whole body lean soft tissue mass (WLTM). Multiple regression analysis was performed to examine the relationship between the protein intake and RET-induced changes in the WLTM after adjusting for age, sleep quality, physical activity, and energy intake. RESULTS: The 16-wk RET program caused a significant gain in the WLTM (1.46 ± 0.45%, P = 0.004). Multiple regression analysis showed that the baseline protein intake at breakfast was negatively associated with the percent change in the WLTM (ß = -1.598; P = 0.022). Additionally, the percent change (ß = 0.624; P = 0.018) in protein intake at breakfast was positively associated with the percent change in WLTM. CONCLUSION: Increasing protein intake at breakfast may contribute to RET-induced muscle hypertrophy in middle-aged women, especially among those who habitually consume low-protein levels at breakfast. However, future studies with larger sample sizes are required to confirm the importance of protein intake at breakfast.


Assuntos
Treinamento Resistido , Composição Corporal , Proteínas Alimentares/metabolismo , Feminino , Humanos , Hipertrofia/metabolismo , Pessoa de Meia-Idade , Força Muscular , Músculo Esquelético/metabolismo , Projetos Piloto , Treinamento Resistido/efeitos adversos
14.
J Foot Ankle Res ; 15(1): 22, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313927

RESUMO

BACKGROUND: The size of the plantar intrinsic and extrinsic foot muscles has been shown to be associated with toe flexor strength (TFS). Previous studies adopted the size of limited plantar intrinsic foot muscles or a compartment containing several muscles as an independent variable for TFS. Among the plantar intrinsic and extrinsic foot muscles, therefore, it is unclear which muscle(s) primarily contributes to TFS production. The present study aimed to clarify this subject. METHODS: In 17 young adult men, a series of anatomical cross-sectional area of individual plantar intrinsic and extrinsic foot muscles was obtained along the foot length and the lower leg length, respectively, using magnetic resonance imaging. Maximal anatomical cross-sectional area (ACSAmax) and muscle volume (MV) for each constituent muscle of the plantar intrinsic foot muscles (flexor hallucis brevis; flexor digitorum brevis, FDB; abductor hallucis; adductor hallucis oblique head, ADDH-OH; adductor hallucis transverse head, ADDH-TH; abductor digiti minimi; quadratus plantae) and extrinsic foot muscles (flexor hallucis longus; flexor digitorum longus) were measured. TFS was measured with a toe grip dynamometry. RESULTS: TFS was significantly associated with the ACSAmax for each of the ADDH-OH (r = 0.674, p = 0.003), ADDH-TH (r = 0.523, p = 0.031), and FDB (r = 0.492, p = 0.045), and the MV of the ADDH-OH (r = 0.582, p = 0.014). As for the ADDH-OH, the correlation coefficient with TFS was not statistically different between ACSAmax and MV (p = 0.189). Stepwise multiple linear regression analysis indicated that ACSAmax and MV of the ADDH-OH alone explained 42 and 29%, respectively, of the variance in TFS. CONCLUSION: The ADDH-OH is the primary contributor to TFS production among the plantar intrinsic and extrinsic foot muscles as the result of the stepwise multiple linear regression analysis.


Assuntos
, Músculo Esquelético , Pé/diagnóstico por imagem , Pé/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Dedos do Pé/fisiologia , Adulto Jovem
15.
PLoS One ; 16(12): e0262100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972181

RESUMO

Toe muscular strength plays an important role in enhancing athletic performance because the forefoot is the only part of the body touching the ground. In general, muscular strength increases with age throughout adolescence, and sex-related difference in muscular strength becomes evident during childhood and adolescence. However, toe muscular strength is known to be levelled off after late adolescence in both sexes. For adolescent populations, therefore, the association of toe muscular strength with physical performance might differ with age and/or sex. This study aimed to investigate differences in relationships between toe muscular strength and vertical jump performance across sex and age in adolescent populations. The maximum isometric strength of the toe muscles and vertical jump height (VJ) were assessed in 479 junior high school students (JH) aged 12-14 years (243 boys and 236 girls) and 465 high school students (HS) aged 15-18 years (265 boys and 200 girls). Two types of measurements were performed to evaluate the toe muscular strength: toe gripping strength (TGS) with the metatarsophalangeal joint in the plantar flexed position and toe push strength (TPS) with the metatarsophalangeal joint in the dorsiflexed position. TGS and TPS were normalized to body weight. Two-way ANOVA showed that TGS had significant main effects of sex (boys > girls) and age (HS > JH) while TPS only had a significant main effect of sex (boys > girls). When the effects of sex and age were separately analyzed, VJ was significantly correlated with TGS in JH girls, HS girls, and JH boys (r = 0.253-0.269, p < 0.05), but not in HS boys (r = 0.062, p = 0.3351). These results suggest that toe muscular strength is relatively weakly associated with vertical jump performance in adolescent boys and girls, but the association would not be established in high school boys.


Assuntos
Desempenho Atlético/fisiologia , Teste de Esforço/métodos , Força da Mão/fisiologia , Força Muscular/fisiologia , Dedos do Pé/fisiologia , Adolescente , Estatura , Peso Corporal , Criança , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Instituições Acadêmicas , Estudantes
16.
J Appl Physiol (1985) ; 131(5): 1584-1598, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617822

RESUMO

Neural and morphological adaptations combine to underpin the enhanced muscle strength following prolonged exposure to strength training, although their relative importance remains unclear. We investigated the contribution of motor unit (MU) behavior and muscle size to submaximal force production in chronically strength-trained athletes (ST) versus untrained controls (UT). Sixteen ST (age: 22.9 ± 3.5 yr; training experience: 5.9 ± 3.5 yr) and 14 UT (age: 20.4 ± 2.3 yr) performed maximal voluntary isometric force (MViF) and ramp contractions (at 15%, 35%, 50%, and 70% MViF) with elbow flexors, whilst high-density surface electromyography (HDsEMG) was recorded from the biceps brachii (BB). Recruitment thresholds (RTs) and discharge rates (DRs) of MUs identified from the submaximal contractions were assessed. The neural drive-to-muscle gain was estimated from the relation between changes in force (ΔFORCE, i.e. muscle output) relative to changes in MU DR (ΔDR, i.e. neural input). BB maximum anatomical cross-sectional area (ACSAMAX) was also assessed by MRI. MViF (+64.8% vs. UT, P < 0.001) and BB ACSAMAX (+71.9%, P < 0.001) were higher in ST. Absolute MU RT was higher in ST (+62.6%, P < 0.001), but occurred at similar normalized forces. MU DR did not differ between groups at the same normalized forces. The absolute slope of the ΔFORCE - ΔDR relationship was higher in ST (+66.9%, P = 0.002), whereas it did not differ for normalized values. We observed similar MU behavior between ST athletes and UT controls. The greater absolute force-generating capacity of ST for the same neural input demonstrates that morphological, rather than neural, factors are the predominant mechanism for their enhanced force generation during submaximal efforts.NEW & NOTEWORTHY In this study, we observed that recruitment strategies and discharge characteristics of large populations of motor units identified from biceps brachii of strength-trained athletes were similar to those observed in untrained individuals during submaximal force tasks. We also found that for the same neural input, strength-trained athletes are able to produce greater absolute muscle forces (i.e., neural drive-to-muscle gain). This demonstrates that morphological factors are the predominant mechanism for the enhanced force generation during submaximal efforts.


Assuntos
Contração Isométrica , Treinamento Resistido , Adaptação Fisiológica , Adolescente , Adulto , Eletromiografia , Humanos , Força Muscular , Músculo Esquelético , Adulto Jovem
17.
J Appl Physiol (1985) ; 131(2): 702-715, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166110

RESUMO

This study compared elbow flexor (EF; experiment 1) and knee extensor (KE; experiment 2) maximal compound action potential (Mmax) amplitude between long-term resistance trained (LTRT; n = 15 and n = 14, 6 ± 3 and 4 ± 1 yr of training) and untrained (UT; n = 14 and n = 49) men, and examined the effect of normalizing electromyography (EMG) during maximal voluntary torque (MVT) production to Mmax amplitude on differences between LTRT and UT. EMG was recorded from multiple sites and muscles of EF and KE, Mmax was evoked with percutaneous nerve stimulation, and muscle size was assessed with ultrasonography (thickness, EF) and magnetic resonance imaging (cross-sectional area, KE). Muscle-electrode distance (MED) was measured to account for the effect of adipose tissue on EMG and Mmax. LTRT displayed greater MVT (+66%-71%, P < 0.001), muscle size (+54%-56%, P < 0.001), and Mmax amplitudes (+29%-60%, P ≤ 0.010) even when corrected for MED (P ≤ 0.045). Mmax was associated with the size of both muscle groups (r ≥ 0.466, P ≤ 0.011). Compared with UT, LTRT had higher absolute voluntary EMG amplitude for the KE (P < 0.001), but not the EF (P = 0.195), and these differences/similarities were maintained after correction for MED; however, Mmax normalization resulted in no differences between LTRT and UT for any muscle and/or muscle group (P ≥ 0.652). The positive association between Mmax and muscle size, and no differences when accounting for peripheral electrophysiological properties (EMG/Mmax), indicates the greater absolute voluntary EMG amplitude of LTRT might be confounded by muscle morphology, rather than providing a discrete measure of central neural activity. This study therefore suggests limited agonist neural adaptation after LTRT.NEW & NOTEWORTHY In a large sample of long-term resistance-trained individuals, we showed greater maximal M-wave amplitude of the elbow flexors and knee extensors compared with untrained individuals, which appears to be at least partially mediated by differences in muscle size. The lack of group differences in voluntary EMG amplitude when normalized to maximal M-wave suggests that differences in muscle morphology might impair interpretation of voluntary EMG as an index of central neural activity.


Assuntos
Treinamento Resistido , Adaptação Fisiológica , Eletromiografia , Humanos , Contração Isométrica , Masculino , Contração Muscular , Músculo Esquelético , Músculo Quadríceps
18.
Front Sports Act Living ; 3: 645350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997779

RESUMO

Change of direction speed (CODS) is essential for basketball performance, extensively assessed by various tests. This review aimed to summarize the CODS test varieties for basketball players on publications until 2019 and identify recent trends regarding what types of tests have gained attention in the 2010s. Electronic literature searches were conducted using three databases with relevant keywords. 104 studies were found eligible, conducting CODS tests 159 times in total with 48 test varieties. To facilitate distinctions between the tests, each test was categorized into one of three types based on the distinctive movement characteristics and changing angles as follows: Defensive (involving lateral shuffling), 180°-turn (exerting only 180°-turns), and Cutting (performing diagonal- or side-cut). We then counted the number of publications and adopted times reported per year for each test, and calculated the adoption rate for each categorized test type. The first CODS test performed in basketball players was the T-Test, reported in 1991, and this was the most commonly adopted test (44/159 times). The 2010s saw abrupt increases in the number of publications (1990s-2000s-2010s: 5-9-90) and test varieties (4-7-44). The adoption rates in the 2010s were similar among the three types (i.e., Defensive/180°-turn/Cutting: 37%/30%/33%), with the Cutting type gradually increasing over the last three decades (1990s-2000s-2010s: 0%-9%-33%). These results suggest that while CODS performances in basketball players are increasingly studied with various tests, recent studies give equal weight to all of the three categorized test types, with increasing adoption of the Cutting type, to assess specific CODS performances.

19.
Eur J Neurosci ; 53(10): 3416-3432, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33763908

RESUMO

It is poorly understood how the central nervous system adapts to resistance training, especially after years of exposure. We compared corticospinal excitability and motor representation assessed with transcranial magnetic stimulation (TMS) between long-term resistance trained (LRT, ≥3 years) versus untrained (UNT) males (n = 15/group). Motor-evoked potentials (MEPs) were obtained from the biceps brachii during isometric elbow flexion. Stimulus-response curves were created at the hotspot during 10% maximum voluntary torque (MVT) contractions. Maximum peak-to-peak MEP amplitude (MEPmax) was acquired with 100% stimulator output intensity, whilst 25%-100% MVT was produced. Maps were created during 10% MVT contractions, with an individualised TMS intensity eliciting 20% MEPmax at the hotspot. LRT had a 48% lower stimulus-response curve slope than UNT (p < .05). LRT also had a 66% larger absolute map size, although TMS intensity used for mapping was greater in LRT versus UNT (48% vs. 26% above active motor threshold) to achieve a target 20% MEPmax at the hotspot, due to the lower slope of LRT. Map size was strongly correlated with the TMS intensity used for mapping (r = 0.776, p < .001). Once map size was normalised to TMS intensity, there was no difference between the groups (p = .683). We conclude that LRT had a lower stimulus-response curve slope/excitability, suggesting higher neural efficiency. TMS map size was overwhelmingly determined by TMS intensity, even when the MEP response at the hotspot was matched among individuals, likely due to larger current spread with higher intensities. Motor representation appears similar between LRT and UNT given no difference in the normalised map size.


Assuntos
Treinamento Resistido , Braço , Eletromiografia , Potencial Evocado Motor , Humanos , Masculino , Músculo Esquelético , Tratos Piramidais , Estimulação Magnética Transcraniana
20.
Med Sci Sports Exerc ; 53(4): 804-815, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009196

RESUMO

PURPOSE: This study aimed to investigate the differences in muscle volumes and strength between male elite sprinters, sub-elite sprinters, and untrained controls and to assess the relationships of muscle volumes and strength with sprint performance. METHODS: Five elite sprinters (100-m season's best equivalent [SBE100], 10.10 ± 0.07 s), 26 sub-elite sprinters (SBE100, 10.80 ± 0.30 s), and 11 untrained control participants underwent 1) 3-T magnetic resonance imaging scans to determine the volume of 23 individual lower limb muscles/compartments and 5 functional muscle groups and 2) isometric strength assessment of lower body muscle groups. RESULTS: Total lower body muscularity was distinct between the groups (controls < sub-elite +20% < elite +48%). The hip extensors exhibited the largest muscle group differences/relationships (elite, +32% absolute and +15% relative [per kg] volume, vs sub-elite explaining 31%-48% of the variability in SBE100), whereas the plantarflexors showed no differences between sprint groups. Individual muscle differences showed pronounced anatomical specificity (elite vs sub-elite absolute volume range, +57% to -9%). Three hip muscles were consistently larger in elite vs sub-elite (tensor fasciae latae, sartorius, and gluteus maximus; absolute, +45%-57%; relative volume, +25%-37%), and gluteus maximus volume alone explained 34%-44% of the variance in SBE100. The isometric strength of several muscle groups was greater in both sprint groups than controls but similar for the sprint groups and not related to SBE100. CONCLUSIONS: These findings demonstrate the pronounced inhomogeneity and anatomically specific muscularity required for fast sprinting and provides novel, robust evidence that greater hip extensor and gluteus maximus volumes discriminate between elite and sub-elite sprinters and are strongly associated with sprinting performance.


Assuntos
Atletas , Força Muscular/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Corrida , Adulto , Nádegas , Quadril , Humanos , Contração Isométrica , Extremidade Inferior/anatomia & histologia , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/fisiologia , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/diagnóstico por imagem , Coxa da Perna , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...