Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 216: 419-427, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27317494

RESUMO

The purpose of this study was to assess the ecotoxic potential of a new zero-valent iron nanomaterial produced for the elimination of chlorinated pollutants at contaminated sites. Abiotic dechlorination through the newly developed nanoscale zero-valent iron material and its effects on dechlorinating bacteria were investigated in anaerobic batch and column experiments. The aged, i.e. oxidized, iron material was characterization with dynamic light scattering, transmission electron microscopy and energy dispersive x-ray analysis, x-ray diffractometry and cell-free reactive oxygen measurements. Furthermore, it was evaluated in aerobic ecotoxicological test systems with algae, crustacean, and fish, and also applied in a mechanism specific test for mutagenicity. The anaerobic column experiments showed co-occurrence of abiotic and biological dechlorination of the common groundwater contaminant perchloroethene. No prolonged toxicity of the nanomaterial (measured for up to 300 days) towards the investigated dechlorinating microorganism was observed. The nanomaterial has a flake like appearance and an inhomogeneous size distribution. The toxicity to crustacean and fish was calculated and the obtained EC50 values were 163 mg/L and 458 mg/L, respectively. The nanomaterial showed no mutagenicity. It physically interacted with algae, which had implications for further testing and the evaluation of the results. Thus, the newly developed iron nanomaterial was slightly toxic in its reduced state but no prolonged toxicity was recorded. The aquatic tests revealed a low toxicity with EC50 values ≥ 163 mg/L. These concentrations are unlikely to be reached in the aquatic environment. Hence, this nanomaterial is probably of no environmental concern not prohibiting its application for groundwater remediation.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Hidrocarbonetos Clorados/química , Nanoestruturas/toxicidade , Animais , Bactérias , Clorófitas/efeitos dos fármacos , Crustáceos , Recuperação e Remediação Ambiental , Peixes , Água Subterrânea , Halogenação , Ferro , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Oxirredução , Microbiologia da Água
2.
Environ Pollut ; 215: 356-365, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27194367

RESUMO

Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites.


Assuntos
Isótopos de Carbono , Carbonatos/química , Nanocompostos/química , Nanotubos de Carbono/química , Polímeros/química , Eliminação de Resíduos/métodos , Luz Solar , Poluentes Ambientais/química , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Cimento de Policarboxilato/química , Radioatividade , Espectrofotometria Infravermelho
3.
Environ Sci Technol ; 50(6): 2747-53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26866387

RESUMO

The analysis of the potential risks of engineered nanomaterials (ENM) has so far been almost exclusively focused on the pristine, as-produced particles. However, when considering a life-cycle perspective, it is clear that ENM released from genuine products during manufacturing, use, and disposal is far more relevant. Research on the release of materials from nanoproducts is growing and the next necessary step is to investigate the behavior and effects of these released materials in the environment and on humans. Therefore, sufficient amounts of released materials need to be available for further testing. In addition, ENM-free reference materials are needed since many processes not only release ENM but also nanosized fragments from the ENM-containing matrix that may interfere with further tests. The SUN consortium (Project on "Sustainable Nanotechnologies", EU seventh Framework funding) uses methods to characterize and quantify nanomaterials released from composite samples that are exposed to environmental stressors. Here we describe an approach to provide materials in hundreds of gram quantities mimicking actual released materials from coatings and polymer nanocomposites by producing what is called "fragmented products" (FP). These FP can further be exposed to environmental conditions (e.g., humidity, light) to produce "weathered fragmented products" (WFP) or can be subjected to a further size fractionation to isolate "sieved fragmented products" (SFP) that are representative for inhalation studies. In this perspective we describe the approach, and the used methods to obtain released materials in amounts large enough to be suitable for further fate and (eco)toxicity testing. We present a case study (nanoparticulate organic pigment in polypropylene) to show exemplarily the procedures used to produce the FP. We present some characterization data of the FP and discuss critically the further potential and the usefulness of the approach we developed.


Assuntos
Poluentes Ambientais/química , Nanocompostos/química , Testes de Toxicidade/métodos , Meio Ambiente , Humanos , Luz , Polímeros
4.
Environ Pollut ; 208(Pt B): 859-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26613672

RESUMO

Under solar radiation several titanium dioxide nanoparticles (nano-TiO2) are known to be phototoxic for daphnids. We investigated the influence of primary particle size (10, 25, and 220 nm) and ionic strength (IS) of the test medium on the acute phototoxicity of anatase TiO2 particles to Daphnia magna. The intermediate sized particles (25 nm) showed the highest phototoxicity followed by the 10 nm and 220 nm sized particles (median effective concentrations (EC50): 0.53, 1.28, 3.88 mg/L). Photoactivity was specified by differentiating free OH radicals (therephthalic acid method) and on the other hand surface adsorbed, as well as free OH, electron holes, and O2(-) (electron paramagnetic resonance spectroscopy, EPR). We show that the formation of free OH radicals increased with a decrease in primary particle size (terephthalic acid method), whereas the total measured ROS content was highest at an intermediate particle size of 25 nm, which consequently revealed the highest photoxicity. The photoactivities of the 10 and 220 nm particles as measured by EPR were comparable. We suggest that phototoxicity depends additionally on the particle-daphnia interaction area, which explains the higher photoxicity of the 10 nm particles compared to the 220 nm particles. Thus, phototoxicity is a function of the generation of different ROS and the particle-daphnia interaction area, both depending on particle size. Phototoxicity of the 10 nm and 25 nm sized nanoparticles decreased as IS of the test medium increased (EC50: 2.9 and 1.1 mg/L). In conformity with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory we suggest that the precipitation of nano-TiO2 was more pronounced in high than in low IS medium, causing a lower phototoxicity. In summary, primary particle size and IS of the medium were identified as factors influencing phototoxicity of anatase nano-TiO2 to D. magna.


Assuntos
Nanopartículas/toxicidade , Tamanho da Partícula , Titânio/toxicidade , Animais , Daphnia , Nanopartículas/análise , Titânio/análise
5.
Ecotoxicology ; 24(6): 1199-212, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26003833

RESUMO

Due to the rapid increase of carbon nanotubes (CNT) applications and their inevitable release into the aquatic environment, CNT may interact with and further influence the fate and transport of other pollutants such as triclocarban (TCC). TCC is a high-production-volume chemical that is widely used as an antimicrobial agent, is continually released into the aquatic environment, and is biologically active and persistent. In the present study, the population test with Daphnia magna was performed over 93 days. Different treatments were examined: (a) control, (b) solvent control, (c) 1 mg CNT/L from the beginning, (d) 1 mg CNT/L as of day 14, (e) control with a 2-day pulse of 25 µg TCC/L on day 14, 41 µg TCC/L (day 54), and 61 µg TCC/L (day 68) and (f) same pulses of TCC with co-exposure to 1 mg CNT/L. Significant changes in all three size classes were observed as a result of the long-term exposure to 1 mg CNT/L. Increasing in number of neonates, and decreasing in number of juveniles and adults were observed. Moreover, daphnids were significantly smaller when they were exposed to MWCNT. The exposure with TCC led to size-dependent mortality in Daphnia magna populations and a subsequent recovery. Lower toxicity of TCC was observed, with the presence of MWCNT in the medium. The reported effects of TCC on population level were compared to the output of an individual-based Daphnia magna population model, in order to verify the model predictions with laboratory data.


Assuntos
Daphnia/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Anti-Infecciosos/administração & dosagem , Carbanilidas/administração & dosagem , Monitoramento Ambiental
6.
Environ Pollut ; 196: 431-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25467692

RESUMO

Carbon nanotubes (CNTs) are considered promising materials in nanotechnology. We quantified CNT accumulation by the alga Desmodesmus subspicatus. Cells were exposed to radiolabeled CNTs ((14)C-CNTs;1 mg/L) to determine uptake and association, as well as elimination and dissociation in clear media.Attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was used to detect effects of CNTs on algae. CNT-cell interactions were visualized by electron microscopy and related to alterations in their cell composition. A concentration factor of 5000 L/kg dry weight was calculated. Most of the material agglomerated around the cells, but single tubes were detected in the cytoplasm. Computational analyses of the ATR-FTIR data showed that CNT treated algae differed from controls at all sampling times.CNT exposure changed the biochemical composition of cells. The fact that CNTs are bioavailable for algae and that they influence the cell composition is important with regard to environmental risk assessment of this nanomaterial.


Assuntos
Clorófitas/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Nanotubos de Carbono/análise , Nanotubos de Carbono/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Technol ; 48(20): 12256-64, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25299126

RESUMO

No data on the bioaccumulation and distribution of multiwalled carbon nanotubes (MWCNTs) in aquatic vertebrates is available until now. We quantified uptake and elimination of dispersed radiolabeled MWCNTs ((14)C-MWCNT; 1 mg/L) by zebrafish (Danio rerio) over time. The influences of the feeding regime and presence of dissolved organic carbon (DOC) on accumulation of the nanomaterial were determined. The partitioning of radioactivity to different organs and tissues was measured in all experiments. A bioaccumulation factor of 16 L/kg fish wet weight was derived. MWCNTs quickly associated with the fish, and steady state was reached within 1 day. After transfer to clear medium, MWCNTs were quickly released to the water phase, but on average 5 mg of MWCNTs/kg fish dry weight remained associated with the fish. The nanomaterial mainly accumulated in the gut of all fish. Feeding led to lower internal concentrations due to facilitated elimination via the digestive tract. In the presence of DOC, 10-fold less was taken up by the fish after 48 h of exposure compared to without DOC. Quick adhesion to and detachment from superficial tissues were observed. Remarkably, little fractions of the internalized radioactivity were detected in the blood and muscle tissue of exposed fish. The part accumulated in these fish compartments remained constant during the elimination phase. Hence, biomagnification of MWCNTs in the food chain is possible and should be a subject of further research.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Animais , Feminino , Cadeia Alimentar
8.
Environ Sci Technol ; 48(20): 12354-61, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238549

RESUMO

Bioconcentration and transformation of the potent and persistent xeno-estrogen 17α-ethinylestradiol (EE2) by organisms at the basis of the food web have received only little research attention. In this study, uptake, elimination, and biotransformation of radiolabeled EE2 ((14)C-EE2) by the freshwater green alga Desmodesmus subspicatus were investigated. The alga highly incorporated radioactivity following (14)C-EE2 exposure. Up to 68% of the test compound was removed from the medium by D. subspicatus within a rather short time period (72 h C(algae)/C(water): 2200 L/kg wet weight). When the algae were transported to clear medium, a two-stage release pattern was observed with an initially quick elimination phase following slower clearance afterward. Interestingly, D. subspicatus brominated EE2 when bromide was available in the medium, a transformation process demonstrated to occur abiotically but not by algae. The consequence of the presence of more hydrophobic mono- and dibrominated EE2 in the environment remains to be further investigated, as these products were shown to have a lower estrogenic potency but are expected to have a higher bioaccumulation potential and to be more toxic than the mother compound.


Assuntos
Clorófitas/metabolismo , Disruptores Endócrinos/metabolismo , Etinilestradiol/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação , Estrogênios/toxicidade , Água Doce , Halogenação , Cinética , Fitoplâncton
9.
Nanoscale Res Lett ; 9(1): 396, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170332

RESUMO

To date, only a few reports about studies on toxic effects of carbon nanotubes (CNT) are available, and their results are often controversial. Three different cell lines (rainbow trout liver cells (RTL-W1), human adrenocortical carcinoma cells (T47Dluc), and human adrenocarcinoma cells (H295R)) were exposed to multiwalled carbon nanotubes, the antimicrobial agent triclocarban (TCC) as well as the mixture of both substances in a concentration range of 3.13 to 50 mg CNT/L, 31.25 to 500 µg TCC/L, and 3.13 to 50 mg CNT/L + 1% TCC (percentage relative to carbon nanotubes concentration), respectively. Triclocarban is a high-production volume chemical that is widely used as an antimicrobial compound and is known for its toxicity, hydrophobicity, endocrine disruption, bioaccumulation potential, and environmental persistence. Carbon nanotubes are known to interact with hydrophobic organic compounds. Therefore, triclocarban was selected as a model substance to examine mixture toxicity in this study. The influence of multiwalled carbon nanotubes and triclocarban on various toxicological endpoints was specified: neither cytotoxicity nor endocrine disruption could be observed after exposure of the three cell lines to carbon nanotubes, but the nanomaterial caused intracellular generation of reactive oxygen species in all cell types. For TCC on the other hand, cell vitality of 80% could be observed at a concentration of 2.1 mg/L for treated RTL-W1 cells. A decrease of luciferase activity in the ER Calux assay at a triclocarban concentration of 125 µg/L and higher was observed. This effect was less pronounced when multiwalled carbon nanotubes were present in the medium. Taken together, these results demonstrate that multiwalled carbon nanotubes induce the production of reactive oxygen species in RTL-W1, T47Dluc, and H295R cells, reveal no cytotoxicity, and reduce the bioavailability and toxicity of the biocide triclocarban.

10.
Environ Sci Technol ; 48(9): 4826-34, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24678632

RESUMO

Due to steady increase in use and mass production carbon nanotubes (CNTs) will inevitably end up in the environment. Because of their chemical nature CNTs are expected to be recalcitrant and biotransform only at very slow rates. Degradation of CNTs within days has recently been reported, but excluding one study, conclusions relied solely on qualitative results. We incubated 13 different types of CNTs and subjected them to enzymatic oxidation with horseradish peroxidase and concluded that the analytical methods commonly employed for studying degradation of CNTs did not have the sensitivity to unequivocally demonstrate degradation of these materials. To obtain unambiguous results with regard to the biotransformability of CNTs in the horseradish peroxidase system we incubated: (a) (14)C-labeled multiwalled CNTs, homologous to Baytubes CNTs; and (b) (13)C-depleted single-walled CNTs, used in previous studies. Our results show that (14)C-CO2 evolved linearly at a rate of about 0.02‰ per day, and at the end of the 30-day incubations the CO2 evolved amounted to about 0.5‰ of both initial substrates, the (14)C-labeled multiwalled and (13)C-depleted single-walled CNTs. These results clearly show that CNT material is oxidized in the horseradish peroxidase system but with half-lives of about 80 years and not a few days as has been reported before. Adequately addressing biotransformation rates of CNTs is key toward a better understanding of the fate of these materials in the environment.


Assuntos
Peroxidase do Rábano Silvestre/química , Nanotubos de Carbono/química , Biotransformação , Radioisótopos de Carbono , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Espalhamento de Radiação , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...