Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6541, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504103

RESUMO

The neurotransmitter serotonin plays a pivotal role in mood and depression. It also acts as a vasoconstrictor within blood vessels and is the main neurotransmitter in the gastrointestinal system. In neurotransmission, released serotonin is taken up by serotonin transporters, which are principal targets of antidepressants and the psychostimulant, ecstasy. The investigation of serotonin transporters have relied almost exclusively on the use of radiolabeled serotonin in heterogenous end-point assays. Here we adapt the genetically encoded fluorescent biosensor, iSeroSnFR, to establish and validate the Serotonin (5-HT) Fluorescence Assay for Transport and Release (5-HT_FAsTR) for functional and pharmacological studies of serotonin transport and release. We demonstrate the applicability of the method for the study of a neuronal, high-affinity, low-capacity serotonin transporter (SERT) as well as an extraneuronal low-affinity, high-capacity organic cation transporter and mutants thereof. 5HT_FAsTR offers an accessible, versatile and reliable semi-homogenous assay format that only relies on a fluorescence plate reader for repeated, real-time measurements of serotonin influx and efflux. 5HT_FAsTR accelerates and democratizes functional characterization and pharmacological studies of serotonin transporters and genetic variants thereof in disease states such as depression, anxiety and ADHD.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Fluorescência , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Antidepressivos , Neurotransmissores
2.
ACS Chem Neurosci ; 11(9): 1231-1237, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275382

RESUMO

The human serotonin transporter (hSERT) terminates serotonergic signaling through reuptake of neurotransmitter into presynaptic neurons and is a target for many antidepressant drugs. We describe here the development of a photoswitchable hSERT inhibitor, termed azo-escitalopram, that can be reversibly switched between trans and cis configurations using light of different wavelengths. The dark-adapted trans isomer was found to be significantly less active than the cis isomer, formed upon irradiation.


Assuntos
Citalopram , Proteínas da Membrana Plasmática de Transporte de Serotonina , Antidepressivos , Citalopram/farmacologia , Humanos , Isomerismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...