Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694956

RESUMO

Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and must therefore be precisely regulated. One of the main centromeric regulatory signaling pathways is the haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. During mitosis, the haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, in which the catalytic component is Aurora B kinase (AURKB). However, the centromeric haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed haspin functions by either its chemical inhibition with LDN-192960 in cultured spermatocytes, or the ablation of the Haspin gene in Haspin-/- mice. Our studies suggest that haspin kinase activity is required for proper chromosome congression both during meiotic divisions and for the recruitment of Aurora B and kinesin MCAK (also known as KIF2C) to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter borealin (or CDCA8) and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the haspin-H3T3ph-CPC pathway and centromere function during meiosis.


Assuntos
Aurora Quinase B , Segregação de Cromossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Masculino , Mamíferos/metabolismo , Meiose/genética , Camundongos , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Treonina/metabolismo
2.
Sci Rep ; 5: 18180, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658992

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that regulates cell cycle progression in proliferating cells. To enter the S-phase, APC/C must be inactivated by phosphorylation of its cofactor, Cdh1. In post-mitotic cells such as neurons APC/C-Cdh1 complex is highly active and responsible for the continuous degradation of mitotic cyclins. However, the specific molecular pathway that determines neuronal cell cycle blockade in post-mitotic neurons is unknown. Here, we show that activation of glutamatergic receptors in rat cortical primary neurons endogenously triggers cyclin-dependent kinase-5 (Cdk5)-mediated phosphorylation of Cdh1 leading to its cytoplasmic accumulation and disassembly from the APC3 core protein, causing APC/C inactivation. Conversely, pharmacological or genetic inhibition of Cdk5 promotes Cdh1 ubiquitination and proteasomal degradation. Furthermore, we show that Cdk5-mediated phosphorylation and inactivation of Cdh1 leads to p27 depletion, which switches on the cyclin D1-cyclin-dependent kinase-4 (Cdk4)-retinoblastoma protein (pRb) pathway to allow the S-phase entry of neurons. However, neurons do not proceed through the cell cycle and die by apoptosis. These results indicate that APC/C-Cdh1 actively suppresses an aberrant cell cycle entry and death of neurons, highlighting its critical function in neuroprotection.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Caderinas/metabolismo , Ciclina D1/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios/metabolismo , Proteína do Retinoblastoma/metabolismo , Fase S , Transdução de Sinais , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Animais , Antígenos CD , Caspase 3/metabolismo , Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ácido Glutâmico , Mitose , Fosforilação , Estabilidade Proteica , Ratos
3.
Nat Cell Biol ; 17(10): 1304-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322680

RESUMO

Blocking mitotic progression has been proposed as an attractive therapeutic strategy to impair proliferation of tumour cells. However, how cells survive during prolonged mitotic arrest is not well understood. We show here that survival during mitotic arrest is affected by the special energetic requirements of mitotic cells. Prolonged mitotic arrest results in mitophagy-dependent loss of mitochondria, accompanied by reduced ATP levels and the activation of AMPK. Oxidative respiration is replaced by glycolysis owing to AMPK-dependent phosphorylation of PFKFB3 and increased production of this protein as a consequence of mitotic-specific translational activation of its mRNA. Induction of autophagy or inhibition of AMPK or PFKFB3 results in enhanced cell death in mitosis and improves the anti-tumoral efficiency of microtubule poisons in breast cancer cells. Thus, survival of mitotic-arrested cells is limited by their metabolic requirements, a feature with potential implications in cancer therapies aimed to impair mitosis or metabolism in tumour cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Fibroblastos/metabolismo , Glicólise , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Fosfofrutoquinase-2/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Western Blotting , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/ultraestrutura , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Células MCF-7 , Camundongos Knockout , Camundongos Nus , Microscopia Confocal , Paclitaxel/farmacologia , Fosfofrutoquinase-2/genética , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Neurosci ; 35(25): 9287-301, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26109654

RESUMO

The survival of postmitotic neurons needs continuous degradation of cyclin B1, a mitotic protein accumulated aberrantly in the damaged brain areas of Alzheimer's disease and stroked patients. Degradation of cyclin B1 takes place in the proteasome after ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C)-cadherin 1 (Cdh1), an E3 ubiquitin ligase that is highly active in neurons. However, during excitotoxic damage-a hallmark of neurological disorders-APC/C-Cdh1 is inactivated, causing cyclin B1 stabilization and neuronal death through an unknown mechanism. Here, we show that an excitotoxic stimulus in rat cortical neurons in primary culture promotes cyclin B1 accumulation in the mitochondria, in which it binds to, and activates, cyclin-dependent kinase-1 (Cdk1). The cyclin B1-Cdk1 complex in the mitochondria phosphorylates the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL), leading to its dissociation from the ß subunit of F1Fo-ATP synthase. The subsequent inhibition of ATP synthase activity causes complex I oxidative damage, mitochondrial inner membrane depolarization, and apoptotic neuronal death. These results unveil a previously unrecognized role for mitochondrial cyclin B1 in the oxidative damage associated with neurological disorders.


Assuntos
Adenosina Trifosfatases/metabolismo , Apoptose/fisiologia , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Neurônios/metabolismo , Proteína bcl-X/metabolismo , Animais , Western Blotting , Proteína Quinase CDC2 , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Imuno-Histoquímica , Imunoprecipitação , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Degeneração Neural/metabolismo , Estresse Oxidativo/fisiologia , Ligação Proteica , RNA Interferente Pequeno , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
5.
Nat Commun ; 4: 2879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24301314

RESUMO

The morphology of the adult brain is the result of a delicate balance between neural progenitor proliferation and the initiation of neurogenesis in the embryonic period. Here we assessed whether the anaphase-promoting complex/cyclosome (APC/C) cofactor, Cdh1--which regulates mitosis exit and G1-phase length in dividing cells--regulates neurogenesis in vivo. We use an embryo-restricted Cdh1 knockout mouse model and show that functional APC/C-Cdh1 ubiquitin ligase activity is required for both terminal differentiation of cortical neurons in vitro and neurogenesis in vivo. Further, genetic ablation of Cdh1 impairs the ability of APC/C to promote neurogenesis by delaying the exit of the progenitor cells from the cell cycle. This causes replicative stress and p53-mediated apoptotic death resulting in decreased number of cortical neurons and cortex size. These results demonstrate that APC/C-Cdh1 coordinates cortical neurogenesis and size, thus posing Cdh1 in the molecular pathogenesis of congenital neurodevelopmental disorders, such as microcephaly.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdh1/metabolismo , Córtex Cerebral/embriologia , Neurogênese , Neurônios/citologia , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Apoptose , Proteínas Cdh1/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Neurônios/enzimologia , Neurônios/metabolismo , Tamanho do Órgão
6.
Nat Cell Biol ; 11(6): 747-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448625

RESUMO

Neurons are known to have a lower glycolytic rate than astrocytes and when stressed they are unable to upregulate glycolysis because of low Pfkfb3 (6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase-3) activity. This enzyme generates fructose-2,6-bisphosphate (F2,6P(2)), the most potent activator of 6-phosphofructo-1-kinase (Pfk1; ref. 4), a master regulator of glycolysis. Here, we show that Pfkfb3 is absent from neurons in the brain cortex and that Pfkfb3 in neurons is constantly subject to proteasomal degradation by the action of the E3 ubiquitin ligase, anaphase-promoting complex/cyclosome (APC/C)-Cdh1. By contrast, astrocytes have low APC/C-Cdh1 activity and therefore Pfkfb3 is present in these cells. Upregulation of Pfkfb3 by either inhibition of Cdh1 or overexpression of Pfkfb3 in neurons resulted in the activation of glycolysis. This, however, was accompanied by a marked decrease in the oxidation of glucose through the pentose phosphate pathway (a metabolic route involved in the regeneration of reduced glutathione) resulting in oxidative stress and apoptotic death. Thus, by actively downregulating glycolysis by APC/C-Cdh1, neurons use glucose to maintain their antioxidant status at the expense of its utilization for bioenergetic purposes.


Assuntos
Antioxidantes/metabolismo , Metabolismo Energético , Glicólise/fisiologia , Neurônios/metabolismo , Fosfofrutoquinase-2/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Animais , Córtex Cerebral/citologia , Glucose/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/citologia , Óxido Nítrico/metabolismo , Oxirredução , Via de Pentose Fosfato/fisiologia , Fosfofrutoquinase-2/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Alinhamento de Sequência
7.
EMBO J ; 27(20): 2736-45, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18818692

RESUMO

Anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that destabilizes cell cycle proteins, is activated by Cdh1 in post-mitotic neurons, where it regulates axonal growth, synaptic plasticity and survival. The APC/C-Cdh1 substrate, cyclin B1, has been found to accumulate in degenerating brain areas in Alzheimer's disease and stroke. This highlights the importance of elucidating cyclin B1 regulation by APC/C-Cdh1 in neurons under stress conditions relevant to neurological disease. Here, we report that stimulation of N-methyl-D-aspartate receptors (NMDARs) that occurs in neurodegenerative diseases promoted the accumulation of cyclin B1 in the nuclei of cortical neurons; this led the neurons to undergo apoptotic death. Moreover, we found that the Ser-40, Thr-121 and Ser-163 triple phosphorylation of Cdh1 by the cyclin-dependent kinase-5 (Cdk5)-p25 complex was necessary and sufficient for cyclin B1 stabilization and apoptotic death after NMDAR stimulation. These results reveal Cdh1 as a novel Cdk5 substrate that mediates cyclin B1 neuronal accumulation in excitotoxicity.


Assuntos
Caderinas/metabolismo , Ciclina B/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Animais , Apoptose , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina B1 , Modelos Biológicos , Neurônios/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...