Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 79(4): 768-779, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725716

RESUMO

BACKGROUND AND AIMS: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging. APPROACH AND RESULTS: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)]. We segmented and annotated 117,270 and 465,632 cells from the TIGER-LC and LCI cohorts, respectively. We observed 4 patient groups of TIGER-LC (IC1, IC2, IC3, and IC4) with distinct tumor-immune cellular interaction patterns. In addition, patients from IC2 and IC4 had much better overall survival than those from IC1 and IC3. Noticeably, tumor and CD8 + T-cell interactions were strongly enriched in IC2, the group with the best patient outcomes. The close proximity between the tumor and CD8 + T cells was a strong predictor of patient outcome in both the TIGER-LC and the LCI cohorts. Bulk transcriptomic data from 51 of the 68 HCC cases were used to determine tumor-specific gene expression features of our classified subtypes. Moreover, we observed that the presence of immune spatial neighborhoods in HCC as a measure of overall immune infiltration is linked to better patient prognosis. CONCLUSIONS: Highly multiplexed imaging analysis of liver cancer reveals tumor-immune cellular heterogeneity within spatial contexts, such as tumor and CD8 + T-cell interactions, which may predict patient survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ecossistema , Prognóstico , Perfilação da Expressão Gênica , Microambiente Tumoral , Linfócitos T CD8-Positivos
2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427592

RESUMO

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Camundongos , Animais , Antígenos CD19 , Doenças Autoimunes/tratamento farmacológico
3.
Cancers (Basel) ; 13(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202278

RESUMO

Systems cancer biology analysis of calorie restriction (CR) mechanisms and pathways has not been carried out, leaving therapeutic benefits unclear. Using metadata analysis, we studied gene expression changes in normal mouse duodenum mucosa (DM) response to short-term (2-weeks) 25% CR as a biological model. Our results indicate cancer-associated genes consist of 26% of 467 CR responding differential expressed genes (DEGs). The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest telomeric maintenance misbalance and metabolic pathway activation playing dual (anti-cancer and pro-oncogenic) roles. The aberrant DEG profile of DM epithelial cells is found within CR-induced overexpression of Paneth cells and is coordinated significantly across GI tract tissues mucosa. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor-immune surveillance. CR induces metabolic reprogramming, suppressing immune mechanics and activating oncogenic pathways. We introduce and argue for our network pro-oncogenic model of the mucosa multicellular tissue response to CR leading to aberrant transcription and pre-malignant states. These findings change the paradigm regarding CR's anti-cancer role, initiating specific treatment target development. This will aid future work to define critical oncogenic pathways preceding intestinal lesion development and biomarkers for earlier adenoma and colorectal cancer detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...