Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 89: 101662, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31672229

RESUMO

On June 2016, a major bloom of Dinophysis acuminata complex was noticed over the coast of Paraná State (PR), southern Brazil, an area unprotected by any official monitoring program. Here we report the results of an extensive sampling effort that ultimately led PR authorities to issue the first State shellfish-harvesting ban due to multi-species okadaic acid (OA) contamination. During its peak, the bloom covered an area of 201 km2 (∼2.0-3.5 × 54.0 km), attaining unprecedentedly high cell densities along the shallow (<15 m) continental shelf (mean 2.2 × 105, maximum 2.1 × 106 cells L-1) and adjacent sandy beaches (mean 2.8 × 105, maximum 5.2 × 106 cells L-1). Only OA was detected in suspension (max. 188 ng L-1). Toxin levels measured in bivalves were several times greater than the regulatory limit of 160 ng g-1, reaching up to 3600 ng g-1 in Crassostrea gasar, by far the highest OA concentrations ever reported in oysters worldwide, 7700 ng g-1 in brown mussels, Perna perna, and lower levels in clams, Anomalocardia brasiliana, and mangrove mussels, Mytella spp. Nine cases of human intoxication were officially reported and five people were hospitalized with typical symptoms of Diarrhetic Shellfish Poisoning linked to the consumption of contaminated bivalves. All bivalves quickly converted most of the OA into its esterified form, DTX-3, and eliminated the toxins only a few weeks following the bloom, with C. gasar being the slowest-detoxifying species. Lower OA levels were accumulated in zooplankton, gastropods and several novel toxin vectors, including benthic organisms such as sand dollars Mellita quinquiesperforata and the ghost-shrimp Callichirus major, which may act as a good indicator of the presence of toxins in sandy beaches, and pelagic fish species that can serve as potential alternative sources of OA to humans (Chaetodipterus faber and Mugil liza). Monitoring toxin contamination in seafood other than bivalves is thus recommended to ensure comprehensive human health protection during massive Dinophysis blooms. Additionally, since OA was also present at low concentrations in the liver of Guiana dolphins Sotalia guianensis and penguins Spheniscus magellanicus, exposure to biotoxins should be considered in conservation actions involving threatened and near-threatened marine organisms in this region.


Assuntos
Dinoflagellida , Toxinas Marinhas , Animais , Brasil , Monitoramento Ambiental , Humanos , Ácido Okadáico
2.
Environ Monit Assess ; 190(6): 329, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730718

RESUMO

This study evaluated an 8-year dataset (2007 to 2015, except 2008) in the attempt to identify the most susceptible periods for the occurrence of diarrheic shellfish poisoning (DSP) episodes associated with the presence of toxigenic dinoflagellates, Dinophysis spp., in the mussel farming area of Babitonga Bay (southern Brazil). Dinophysis acuminata complex was the most frequent (present in 66% of the samples) and abundant (max. 4100 cells L-1) taxon, followed by D. caudata (14%; max. 640 cells L-1) and D. tripos (0.9%; max. 50 cells L-1). There was a marked onset of the annual rise in Dinophysis spp. abundance during weeks 21-25 (early winter) of each year, followed by a second peak on week 35 (spring). Mussel (Perna perna) samples usually started testing positive in DSP mouse bioassays (MBA) in late winter. Positive results were more frequent in 2007 and 2011 when the mean D. acuminata complex abundance was ~ 500 cells L-1. Although positive DSP-MBA results were observed in only 11% of the samples during the studied period, the toxin okadaic acid (OA) was present in 90% of the analyzed mussels (max. 264 µg kg-1). MBA results were positive when D. acuminata complex cell densities exceed 1200 ± 300 cells L-1, while trace toxin amounts could be detected at cell densities as low as 150 ± 50 cells L-1 (free OA) to 200 ± 100 cells L-1 (conjugated OA). Low salinity and the meteorological conditions triggered by La Niña events were the main factors associated with both Dinophysis abundance and OA accumulation in mussels.


Assuntos
Aquicultura , Monitoramento Ambiental , Estuários , Toxinas Marinhas/metabolismo , Perna (Organismo)/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Bivalves , Brasil , Dinoflagellida , Toxinas Marinhas/análise , Camundongos , Alimentos Marinhos , Estações do Ano , Frutos do Mar/análise , Intoxicação por Frutos do Mar , Poluentes Químicos da Água/análise
3.
Nanoscale ; 1(3): 360-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20648274

RESUMO

A nonaqueous route based on the solvothermal reaction of alkaline earth precursors with aluminium isopropoxide in benzyl alcohol is introduced. This simple process leads to crystalline complex nanostructures of alkaline earth aluminates, which, up to now, could only be obtained by solid state reaction at temperatures above 1100 degrees C or by sol-gel and further calcination at temperatures only slightly lower ( approximately 800 degrees C). The approach appears to be rather general since under the same reaction conditions BaAl(2)O(4), CaAl(4)O(7), and SrAl(4)O(7) could be obtained. The as-synthesized materials were characterized by X-ray diffraction, electron microscopy techniques, solid-state NMR and FT-IR spectroscopies. The reaction mechanism, which was studied as well, indicates the in-situ formation of benzoate species. These can preferentially bind to particular crystallographic facets of the aluminates via bridging bonds, thereby stabilizing the surfaces that give rise to the peculiar complex structure of the final material. In order to supplement the synthesis approach and to investigate the formation of impurity phases, pure aluminium oxide hybrid nanostructures were synthesized under similar conditions and fully characterized.

4.
J Am Chem Soc ; 130(1): 150-67, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18076163

RESUMO

Isostructural modular microporous Na2[Y(hedp)(H2O)0.67] and Na4[Ln2(hedp)2(H2O)2].nH2O (Ln = La, Ce, Nd, Eu, Gd, Tb, Er) framework-type, and layered orthorhombic [Eu(H2hedp)(H2O)2].H2O and Na0.9[Nd0.9Ge0.10(Hhedp)(H2O)2], monoclinic [Ln(H2hedp)(H2O)].3H2O (Ln = Y, Tb), and triclinic [Yb(H2hedp)].H2O coordination polymers based on etidronic acid (H5hedp) have been prepared by hydrothermal synthesis and characterized structurally by (among others) single-crystal and powder X-ray diffraction and solid-state NMR. The structure of the framework materials comprises eight-membered ring channels filled with Na+ and both free and lanthanide-coordinated water molecules, which are removed reversibly by calcination at 300 degrees C (structural integrity is preserved up to ca. 475 degrees C), denoting a clear zeolite-type behavior. Interesting photoluminescence properties, sensitive to the hydration degree, are reported for Na4[Eu2(hedp)2(H2O)2].H2O and its fully dehydrated form. The 3D framework and layered materials are, to a certain extent, interconvertable during the hydrothermal synthesis stage via the addition of HCl or NaCl: of the 3D framework Na4[Tb2(hedp)2(H2O)2].nH2O, affords layered [Tb(H2hedp) (H2O)].3H2O, whereas layered [Tb(H2hedp)(H2O)2].H2O reacts with sodium chloride yielding a material similar to Na4[Tb2(hedp)2(H2O)2].nH2O. In layered [Y(H2hedp)(H2O)].3H2O, noncoordinated water molecules are engaged in cooperative water-to-water hydrogen-bonding interactions, leading to the formation of a (H2O)13 cluster, which is the basis of an unprecedented two-dimensional water network present in the interlayer space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...