Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(8): 5893-5914, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37183215

RESUMO

This study was designed to determine the level of potentially toxic elements (PTEs) contamination in soil and selected fruits and assesses the health risk of inhabitants in the abandoned tin mining community in Kuba, Bokkos LGA. Samples of the abandoned mine soil and selected fruits mango (Magnifera indica), guava (Psidium guajava), avocado pear (Persea americana), and banana (Musa spp)) from the vicinity of the abandoned mine were analyzed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the levels of all the PTEs analysed in the abandoned mine soil samples were significantly (p < 0.05) higher than their corresponding values in the control soil from the non-mining area. Except for Cd, the mean concentrations of As, Cr, Cu, Mn, Ni, and Pb were significantly higher than the FAO/WHO maximum permissible limit. Except for Zn in guava fruits and Cd in avocado fruits, the mean concentration of PTEs in fruits from abandoned mines was significantly (p < 0.05) higher than their corresponding control values. In contrast, the mean levels of As, Cr, Cu, Mn, Ni, and Pb in the investigated fruits were significantly (p < 0.05) higher than FAO/WHO maximum permissible limits established for fruits. The studied fruits remarkably took up and bioaccumulated PTEs from the abandoned mine soil. Mango fruit significantly bioaccumulated As (5.40), Cd (3.40), and Zn (2.81). Guava fruit bioaccumulated As (1.50) and Cd (4.60), while avocado bioaccumulated As (3.53), Cd (3.80), and Zn (6.48). Banana bioaccumulated As (0.96), Cd (0.80), and Zn (6.78). The hazard quotient values for PTEs investigated in fruits for adults, and children were several folds greater than 1. The hazard index (HI) for the PTEs through consuming fruits for children and adults was greater than 1, indicating that possible health risks exist for both local children and adults. However, the HI values for the children were higher than those for adults, implying that children were exposed to more potential noncarcinogenic health risks from PTEs than adults. The total cancer risk (TCR) values for Cr and Ni for all the fruits studied were within 10-3-10-1, which is several-fold higher than the permissible limits (10-6 and < 10-4), indicating high carcinogenic risk. TCR values for Cd and Pb in all the fruits, except for Cd in guava and avocado fruits for children, were within the range of 10-5-10-4, indicating that they are associated with moderate risk. The CR values for all the PTEs in all the fruits for adults and children except for mango fruit adults were within 10-2-10-1, indicating high carcinogenic risk. In conclusion, the results and risk assessment provided by this study indicate that human exposure to fruits from abandoned mines suggests a high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Cádmio/análise , Frutas/química , Árvores , Lagoas , Governo Local , Solo/química , Nigéria , Chumbo/toxicidade , Chumbo/análise , Monitoramento Ambiental/métodos , Zinco/análise , Manganês/análise , Níquel/análise , Arsênio/toxicidade , Arsênio/análise , Cromo/análise , Medição de Risco , Receptores de Antígenos de Linfócitos T/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , China
2.
Arch Environ Contam Toxicol ; 83(1): 47-66, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35678870

RESUMO

The past mining activities in Bokkos Local Government Area (LGA) were performed in an uncontrolled way and gave rise to many abandoned ponds now serving as domestic and irrigation water sources. Past research focused mainly on the environmental impact, and we show for the first time what the human health risk through consumption of contaminated food crops is in these communities. This study was designed to determine the level of Potentially Toxic Elements (PTEs) contamination in pond water, soil, and food crops and assess the health risk of inhabitants in the abandoned tin mining community in Bokkos LGA. Samples of the mining pond water, soil, and selected food crops from farms irrigated with the pond water: bitter leaf (Vernonia amygdalina), pepper (Piper nigrum), okra (Albelmoschus esculentus), maize (Zea mays), sweet potato (Ipomoea batatas), and Irish potato (Solanum tuberosum) were analyzed for each of the eight PTEs (viz. Cu, Cr, Fe, Mn, Ni, Zn, Cd, and Pb) using inductively coupled plasma optical emission spectrometry (ICP-OES). The results obtained showed that the levels of all the PTEs analyzed in the soil, pond water, and selected food crops except for Fe and Mn in soil and Cd in sweet potato were greater than their corresponding background area values (p < 0.05). Also, the mean concentrations of all the PTEs except for Cu in pond water were significantly (p < 0.05) higher than the WHO maximum permissible limit. With the exception of Fe, Ni, and Zn for pepper and okra, Cu and Fe for maize grains as well as Cu, Ni, and Zn for sweet and Irish potatoes and Fe and Cd for sweet potato, the mean concentrations of PTEs in the food crops were significantly higher than WHO maximum permissible limit. The EF values of Cd (0.39); Cu (3.59) and Ni (2.81); Cr (9.38) and Pb (17.84); and Mn (178.13) and Zn (83.22) classified the soil as minimally, moderately, significantly, and extremely highly enriched, respectively. The PI values of all the PTEs in the soil studied were all greater than 5, indicating that the soils were severely contaminated. There was evidence that food crops significantly bioaccumulated PTEs either as a result of contaminated soil and/or irrigation water. The bioaccumulation was not uniform and was dominated by transfer from the polluted irrigation water. The bitter leaf, okra, and to some extent maize had the highest transfer of PTEs, and Mn, Cu, and Zn had the highest bioaccumulation in the food crops investigated. The hazardous index (HI) for the eight PTEs through the consumption of food crops was 107 for children and 33 for adults which greatly exceeded the recommended limit of 1, thus indicating that possible health risks exist for both local children and adults. For every PTE, the values of HI for children are many-fold higher than those for adults, which is of particular concern due to the high HI values for Pb found for maize consumption, a typical staple food. The cancer risk values for Cr and Ni for all the food crops were within 10-3-10-1 which is several fold higher than the permissible limits (10-6 and < 10-4) indicating the high carcinogenic risk. It can be concluded based on the results and risk assessment provided by this study that human exposure to mining pond water and soil in farms around the mining pond through the food chain suggests the high vulnerability of the local community to PTE toxicity. Long-term preventive measures to safeguard the health of the residents need to be put in place.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Cádmio/análise , Criança , Produtos Agrícolas , Monitoramento Ambiental/métodos , Humanos , Chumbo/análise , Metais Pesados/análise , Nigéria , Medição de Risco , População Rural , Solo , Poluentes do Solo/análise , Estanho/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...