Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Virol ; 66(2): 192-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766477

RESUMO

Presence of alternate hosts of plants is a great threat to the agriculture industry. Plants from several species growing in the papaya orchards affected by papaya sticky disease were examined for Papaya meleira virus (PMeV) infection causing this disease. The viral dsRNA was already detected in some plants from the family Poaceae or in watermelon. To identify new hosts of PMeV, we have collected 38 plant species belonging to 15 families of common weed species found in papaya-growing areas in México and used reverse-transcription PCR (RT-PCR) or quantitative real-time RT-PCR (RT-qPCR) for virus detection. We have detected the viral RNA in 11 species belonging to the families Acanthaceae, Fabaceae and Poaceae. Under experimental conditions, PMeV-Mx in Panicum hirsutum and Ruellia nudiflora inoculated weed species, showed that PMeV-Mx is able to replicate in plant cells of these species and spread in a systemic way. These results highlight the importance of weed species as potential virus reservoirs for PMeV-Mx Keywords: Papaya meleira virus; papaya sticky disease; Carica papaya; RT-PCR; TaqMan.


Assuntos
Carica , Vírus de Plantas , México , Doenças das Plantas , Vírus de Plantas/genética , RNA Viral
2.
Plant Dis ; 103(8): 2015-2023, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31169086

RESUMO

Papaya meleira virus (PMeV) causes sticky disease in Carica papaya in Brazil and Mexico. Despite its economic importance and the need for effective phytosanitary control, it remains unknown whether any insect is the vector of this virus. The aim of this work was to identify potential insect vectors of the PMeV-Mexican variant (PMeV-Mx) and determine whether these potential vectors are capable of transmitting the virus. Adult insects were collected in papaya fields in the south-southeast region of Mexico and were identified morphologically and molecularly. Their abundance and frequency were determined, and quantitative reverse transcription polymerase chain reaction was performed to establish if they carried PMeV-Mx. The Cicadellidae family (Hemiptera) was the most diverse and abundant, and Empoasca papayae was the most abundant species and had the highest virus titers. PMeV-Mx transmission assays were conducted under controlled conditions using E. papayae on C. papaya 'Maradol'. E. papayae was a carrier of PMeV-Mx at 6 h after exposure, and its viral titer increased with time, peaking at 2.125 pg/µl of PMeV-Mx RNA from 20 ng/µl of cDNA, 5 days after exposure (dae). From 14 days after plants were exposed to insects, PMeV-Mx was detected and quantified in 100% of the evaluated papaya plants, whose viral RNA titer increased from 0.06 (21 dae) to 26.6 pg/µl of PMeV-Mx RNA (60 dae) from 20 ng/µl of cDNA. Three months later, these plants developed sticky disease symptoms, demonstrating that E. papayae is capable of transmitting PMeV-Mx to C. papaya 'Maradol'.


Assuntos
Carica , Hemípteros , Vírus de Plantas , Vírus de RNA , Animais , Brasil , Carica/virologia , Hemípteros/virologia , México , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vírus de RNA/fisiologia
3.
J Microbiol ; 56(11): 813-821, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30353467

RESUMO

Mexico is one of the five largest producers of papaya worldwide, but losses caused by pathogens, mainly fungus, at the pre- and post-harvest stages are often more than 50% of the crop. Papaya anthracnose, caused by three different species of the Colletotrichum genus in Mexico, occupies a preponderant place in this problem. Although two of these species, C. gloeosporiodes and C. truncatum, have been characterized morphologically and genotypically, this has not occurred with C. magnum, the third species involved, about which there is very little information. Because of this, it is vital to know its genetic characterization, much more so considering that the studies carried out on the other two species reveal a wide genetic diversity, differences in pathogenicity and in the response to fungicides of the different strains characterized. In this work, Colletotrichum spp. isolates were collected at different papaya orchards in the south-southeast of Mexico. C. magnum isolates identified by species-specific primers were characterized by morphological and molecular approaches. Differences in colony characteristics resulted in five morphological groups. AP-PCR, DAMD and ISSR markers were found to be very efficient for revealing the interspecific variability of this species. The high genetic variability found in the accessions of C. magnum was linked to the geographical area where they were collected. Isolates from Chiapas State were the most variable, showing point mutations in the ITS1-ITS2 region. These results will enable a better phytosanitary management of anthracnose in papaya in this region of Mexico.


Assuntos
Carica/microbiologia , Colletotrichum/genética , Colletotrichum/isolamento & purificação , Impressões Digitais de DNA/métodos , Variação Genética , Sequência de Bases , Colletotrichum/efeitos dos fármacos , Primers do DNA , DNA Fúngico/genética , DNA Ribossômico/genética , Bases de Dados de Ácidos Nucleicos , Fungicidas Industriais/farmacologia , Genótipo , México , Doenças das Plantas/microbiologia , Mutação Puntual , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , RNA Ribossômico 5,8S/genética , Análise de Sequência , Especificidade da Espécie , Virulência
4.
Int J Mol Sci ; 17(4): 574, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27092495

RESUMO

Sticky disease, which is caused by Papaya meleira virus (PMeV), is a significant papaya disease in Brazil and Mexico, where it has caused severe economic losses, and it seems to have spread to Central and South America. Studies assessing the pathogen-host interaction at the nano-histological level are needed to better understand the mechanisms that underlie natural resistance. In this study, the topography and mechanical properties of the leaf midribs and latex of healthy and PMeV-infected papaya plants were observed by atomic force microscopy and scanning electron microscopy. Healthy plants displayed a smooth surface with practically no roughness of the leaf midribs and the latex and a higher adhesion force than infected plants. PMeV promotes changes in the leaf midribs and latex, making them more fragile and susceptible to breakage. These changes, which are associated with increased water uptake and internal pressure in laticifers, causes cell disruption that leads to spontaneous exudation of the latex and facilitates the spread of PMeV to other laticifers. These results provide new insights into the papaya-PMeV interaction that could be helpful for controlling papaya sticky disease.


Assuntos
Carica/virologia , Látex/análise , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Carica/ultraestrutura , Interações Hospedeiro-Patógeno , Folhas de Planta/ultraestrutura
5.
Viruses ; 7(4): 1853-70, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25856636

RESUMO

Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease, which is characterized by a spontaneous exudation of fluid and aqueous latex from the papaya fruit and leaves. The latex oxidizes after atmospheric exposure, resulting in a sticky feature on the fruit from which the name of the disease originates. PMeV is an isometric virus particle with a double-stranded RNA (dsRNA) genome of approximately 12 Kb. Unusual for a plant virus, PMeV particles are localized on and linked to the polymers present in the latex. The ability of the PMeV to inhabit such a hostile environment demonstrates an intriguing interaction of the virus with the papaya. A hypersensitivity response is triggered against PMeV infection, and there is a reduction in the proteolytic activity of papaya latex during sticky disease. In papaya leaf tissues, stress responsive proteins, mostly calreticulin and proteasome-related proteins, are up regulated and proteins related to metabolism are down-regulated. Additionally, PMeV modifies the transcription of several miRNAs involved in the modulation of genes related to the ubiquitin-proteasome system. Until now, no PMeV resistant papaya genotype has been identified and roguing is the only viral control strategy available. However, a single inoculation of papaya plants with PMeV dsRNA delayed the progress of viral infection.


Assuntos
Carica/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Carica/imunologia , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia
6.
J Microbiol ; 53(1): 14-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25557477

RESUMO

This study characterized Clavispora lusitaniae strains isolated from different stages of the processing and early fermentation of a henequen (Agave fourcroydes) spirit produced in Yucatan, Mexico using a molecular technique. Sixteen strains identified based on morphological features, obtained from different substrates, were typed molecularly. Nine different versions of the divergent D1/D2 domain of the large-subunit ribosomal DNA sequence were identified among the C. lusitaniae strains. The greatest degree of polymorphism was found in the 90-bp structural motif of the D2 domain. The MSP-PCR technique was able to differentiate 100% of the isolates. This study provides significant insight into the genetic diversity of the mycobiota present during the henequen fermentation process, especially that of C. lusitaniae, for which only a few studies in plants have been published. The applied MSP-PCR markers were very efficient in revealing olymorphisms between isolates of this species.


Assuntos
Agave/microbiologia , Bebidas Alcoólicas/microbiologia , Impressões Digitais de DNA , DNA Fúngico/genética , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , DNA Ribossômico , Fermentação , Variação Genética , México , Microbiota , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Saccharomycetales/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...