Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Appl Biomech ; 40(3): 241-249, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604601

RESUMO

This study estimated the contribution of the midfoot joint complex (MJC) kinematics to the pelvis anterior-posterior positions during the stance phase of walking and investigated whether the MJC is functionally coordinated with the lower limb joints to maintain similar pelvic positions across steps. Hip, knee, ankle, and MJC sagittal angles were measured in 11 nondisabled participants during walking. The joints' contributions to pelvic positions were computed through equations derived from a link-segment model. Functional coordination across steps was identified when the MJC contribution to pelvic position varied and the summed contributions of other joints varied in the opposite direction (strong negative covariations [r ≤ -.7] in stance phase instants). We observed that the MJC plantarflexion (arch raising) during the midstance and late stance leads the pelvis backward, avoiding excessive forward displacement. The MJC was the second joint that contributed most to the pelvis positions (around 18% of all joints' contributions), after the ankle joint. The MJC and ankle were the joints that were most frequently coordinated with the other joints (≅70% of the stance phase duration). The findings suggest that the MJC is part of the kinematic chain that determines pelvis positions during walking and is functionally coordinated with the lower limb joints.


Assuntos
Caminhada , Humanos , Masculino , Caminhada/fisiologia , Fenômenos Biomecânicos , Feminino , Adulto , Extremidade Inferior/fisiologia , Articulação do Tornozelo/fisiologia , Articulações do Pé/fisiologia , Pé/fisiologia , Pelve/fisiologia , Articulação do Quadril/fisiologia
2.
J Biomech ; 147: 111452, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682212

RESUMO

Tracking hip and thigh axial rotation has limited accuracy due to the large soft tissue artifact. We proposed a tracking-markers cluster anchored to the prominent distal part of the iliotibial band (ITB) to improve thigh tracking. We investigated if the ITB cluster improves accuracy compared with a traditionally used thigh cluster. We also compared the hip kinematics obtained with these clusters during walking and step-down. Hip and thigh kinematics were assessed during a task of active internal-external rotation with the knee extended, in which the shank rotation is a reference due to smaller soft-tissue artifact. Errors of the hip and thigh axial rotations obtained with the thigh clusters compared to the shank cluster were computed as root-mean-square errors, which were compared by paired t-tests. The angular waveforms of this task were compared using the statistical parametric mapping (SPM). Additionally, the hip waveforms in all planes obtained with the thigh clusters were compared during walking and step-down, using Coefficients of Multiple Correlation (CMC) and SPM (α = 0.05 for all analyses). The ITB cluster errors were approximately 25 % smaller than the traditional cluster error (p < 0.001). ITB cluster errors were smaller at external rotation angles while the traditional cluster error was smaller at internal rotation angles (p < 0.001), although the clusters' waveforms were not significantly different (p ≥ 0.005). During walking and step-down, both clusters provided similar hip kinematics (CMC ≥ 0.75), but differences were observed in parts of the cycles (p ≤ 0.04). The findings suggest that the ITB cluster may be used in studies focused on hip axial rotation.


Assuntos
Articulação do Quadril , Coxa da Perna , Amplitude de Movimento Articular , Extremidade Inferior , Caminhada , Articulação do Joelho , Fenômenos Biomecânicos
3.
Gait Posture ; 91: 48-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34649170

RESUMO

BACKGROUND: The Rizzoli Foot Model (RFM) and Oxford Foot Model (OFM) are used to analyze segmented foot kinematics with independent tracking markers. Alternatively, rigid marker clusters can be used to improve markers' visualization and facilitate analyzing shod gait. RESEARCH QUESTION: Are there differences in angles from the RFM and OFM, obtained with independent and clustered tracking markers, during the stance phase of walking? METHODS: Walking kinematics of 14 non-disabled participants (25.2 years (SD 2.8)) were measured at self-selected speed. Rearfoot-shank and forefoot-rearfoot angles were measured from two models with two tracking methods: RFM, OFM, RFM-cluster, and OFM-cluster. In RFM-cluster and OFM-cluster, the rearfoot and forefoot tracking markers were rigidly clustered, fixed on rods' tips attached to a metallic base. Statistical Parametric Mapping (SPM) One-Way Repeated Measures ANOVAs and SPM Paired t-tests were used to compare waveforms. Coefficients of Multiple Correlation (CMC) quantified the similarity between waveforms. One-way Repeated Measures ANOVAs were conducted to compare the ranges of motion (ROMs), and pre-planned contrasts investigated differences between the models and tracking methods. Intraclass Correlation Coefficients (ICC) were computed to verify the similarity between ROMs. RESULTS: Differences occurred mostly in small parts of the stance phase for the cluster vs. non-cluster comparisons and the RFM vs. OFM comparisons. ROMs were slightly different between the models and tracking methods in most comparisons. The curves (CMC ≥ 0.71) were highly similar between the models and tracking methods. The ROMs (ICC ≥ 0.67) were moderatetly to highly similar in most comparisons. RFM vs. RFM-cluster (forefoot-rearfoot angle - transverse plane), OFM vs. OFM-cluster and RFM vs. OFM (forefoot-rearfoot angle - frontal plane) were not similar (non-significant). SIGNIFICANCE: Rigid clusters are an alternative for tracking rearfoot-shank and forefoot-rearfoot angles during the stance phase of walking. However, specific differences should be considered to contrast results from different models and tracking methods.


Assuntos
, Caminhada , Fenômenos Biomecânicos , Marcha , Humanos , Sapatos
4.
Pediatr Pulmonol ; 55(5): 1184-1189, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32168420

RESUMO

BACKGROUND: Quantifying the chest wall is useful in documenting thoracoabdominal synchrony during the neonatal period. Subjective measures are often used rather than gold-standard methods due to their practicality in clinical practice. The aim of the present study is to compare the reliability between a newly proposed method (video analysis in MATLAB) and image analysis using AutoCad tools, both applied to assess thoracoabdominal motion in newborns (NBs). MATERIALS AND METHODS: This is an observational cross-sectional study of full-term NBs. A digital camera was used to film thoracoabdominal motion for 2 minutes in the supine position, with movements measured by the two aforementioned methodologies. RESULTS: A total of 139 images were used, showing agreement between AutoCAD and MATLAB (BIAS = -1.68; CI = -6.59:3.22, Bland-Altman plot). CONCLUSION: The programs were interchangeable and the routine developed in MATLAB was simpler and faster, allowing dynamic analysis and suggesting its clinical utility in quantifying respiratory motion in NBs.


Assuntos
Processamento de Imagem Assistida por Computador , Movimento , Parede Torácica/fisiologia , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Mecânica Respiratória , Software
5.
J Biomech ; 93: 118-125, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31288932

RESUMO

It has been suggested that the foot acts as a twisted osteoligamentous plate to control pronation and facilitate supination during walking. The aim of this study was to investigate the effect of an orthosis inspired by the concept of a foot's twisted osteoligamentous plate on the kinematics of foot-ankle complex. Thirty-five subjects underwent a kinematic assessment of the foot-ankle complex during walking using three different orthoses: (1) Twisted Plate Spring (TPS) orthosis: inspired by the concept of a twisted osteoligamentous plate shape and made with a spring-like material (carbon fiber); (2) Flat orthosis: control orthosis made of a non-elastic material with a non-inclined surface; and (3) Rigid orthosis: control orthosis made of a non-elastic material, with the same shape of the TPS. Repeated measures analyses of variance demonstrated that the TPS reduced the duration and magnitude of rearfoot eversion (p ≤ 0.03), increased rearfoot inversion relative to shank (p < 0.01), increased forefoot eversion relative to rearfoot (p < 0.01), and increased peak of plantar flexion of forefoot relative to rearfoot during the propulsive phase (p = 0.01) compared to Flat orthosis. The effects of the TPS were different from the Rigid orthosis, demonstrating that, alongside shape, material properties were a determinant factor for the obtained results. The findings of this study help clarify the role of a mechanism similar to a twisted osteoligamentous plate on controlling foot pronation and facilitating supination during the stance phase of walking.


Assuntos
Tornozelo/fisiologia , Órtoses do Pé , Pé/fisiologia , Fenômenos Mecânicos , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pronação , Supinação
6.
Braz J Phys Ther ; 20(3): 240-7, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27437715

RESUMO

BACKGROUND: Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. OBJECTIVE: To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. METHOD: Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. RESULTS: EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. CONCLUSION: This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises.


Assuntos
Contração Muscular/fisiologia , Exercícios de Alongamento Muscular , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Tendões/fisiologia , Eletromiografia , Análise Fatorial , Humanos , Exercícios de Alongamento Muscular/normas , Torque
7.
Braz. j. phys. ther. (Impr.) ; 20(3): 240-247, tab, graf
Artigo em Inglês | LILACS | ID: lil-787653

RESUMO

ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises.


Assuntos
Humanos , Tendões/fisiologia , Amplitude de Movimento Articular/fisiologia , Músculo Esquelético/fisiologia , Exercícios de Alongamento Muscular , Contração Muscular/fisiologia , Análise Fatorial , Torque , Eletromiografia , Exercícios de Alongamento Muscular/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA