Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 231: 104020, 2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33096306

RESUMO

Trypanosoma cruzi trypomastigotes adhere to extracellular matrix (ECM) to invade mammalian host cells regulating intracellular signaling pathways. Herein, resin-assisted enrichment of thiols combined with mass spectrometry were employed to map site-specific S-nitrosylated (SNO) proteins from T. cruzi trypomastigotes incubated (MTy) or not (Ty) with ECM. We confirmed the reduction of S-nitrosylation upon incubation with ECM, associated with a rewiring of the subcellular distribution and intracellular signaling pathways. Forty, 248 and 85 SNO-peptides were identified only in MTy, Ty or in both conditions, respectively. SNO proteins were enriched in ribosome, transport, carbohydrate and lipid metabolisms. Nitrosylation of histones H2B and H3 on Cys64 and Cys126, respectively, is described. Protein-protein interaction networks revealed ribosomal proteins, proteins involved in carbon and fatty acid metabolism to be among the enriched protein complexes. Kinases, phosphatases and enzymes involved in the metabolism of carbohydrates, lipids and amino acids were identified as nitrosylated and phosphorylated, suggesting a post-translational modifications crosstalk. In silico mapping of nitric oxide synthase (NOS) genes, previously uncharacterized, matched to four putative T. cruzi proteins expressing C-terminal NOS domain. Our results provide the first site-specific characterization of S-nitrosylated proteins in T. cruzi and their modulation upon ECM incubation before infection of the mammalian hosts. SIGNIFICANCE: Protein S-nitrosylation represents a major molecular mechanism for signal transduction by nitric oxide. We present for the first time a proteomic profile of S-nitrosylated proteins from infective forms of T. cruzi, showing a decrease in SNO proteins after incubation of the parasite with the extracellular matrix, a necessary step for the parasite invasion of the host mammalian cells. We also show for the first time nitrosylation of H2B (Cys64) and H3 (Cys126) histones, sites not conserved in higher eukaryotic cells, and suggest that some specific histone isoforms are sensitive to NO signaling. S-nitrosylation in H2B and H3 histones are more abundant in MTy. Moreover, proteins involved in translation, glycolytic pathway and fatty acid metabolism are enriched in the present dataset. Comparison of the SNO proteome and the phosphoproteome, obtained previously under the same experimental conditions, show that most of the proteins sharing both modifications are involved in metabolic pathways, transport and ribosome function. The data suggest that both PTMs are involved in reprogramming the metabolism of T. cruzi in response to environmental changes. Although NO synthesis was detected in T. cruzi, the identification of NOS remains elusive. Analysis in silico showed two genes similar in domains to NADPH-dependent cytochrome-P450 reductase and two putative oxidoreductases, but no oxygenase domain of NOS was mapped in the T. cruzi genome. It is tempting to speculate that NO synthase-like from T. cruzi and its early NO-mediated pathways triggered in response to host interaction constitute potential diagnostic and therapeutic targets.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Matriz Extracelular , Proteoma , Proteômica
2.
Vet Parasitol ; 204(3-4): 243-8, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24929446

RESUMO

Herbal medicines with anthelmintic effects are alternatives for the sustainable control and prevention of disease caused by gastrointestinal parasites. The nanoencapsulation of essential oils has been proposed to enhance the absorption of their constituents and improve their efficacy. The present study aimed to evaluate the efficacy of free and nanoencapsulated Eucalyptus citriodora essential oil (EcEO) on the control of gastrointestinal nematodes of small ruminants in vitro and in vivo. Chitosan was used as a matrix for the formulation of a nanoemulsion. Chromatographic and physico-chemical analyses of EcEO were performed. Egg hatch (EHT) and larval development (LDT) tests were conducted to evaluate the effectiveness of nanoencapsulated and free EcEO on the eggs and larvae of Haemonchus contortus. Acute toxicity of free and nanoencapsulated EcEO was evaluated using mice. Finally, nanoencapsulated EcEO efficacy on the control of gastrointestinal nematodes was calculated by fecal egg count reduction test (FECRT) treating 30 sheep naturally infected with 250 mg/kg of free and nanoencapsulated EcEO. In vitro tests were analyzed by an analysis of variance (ANOVA) followed by comparison with the Tukey test. The efficacy of FECRT was calculated by the BootStreet program through arithmetic average, using the formula 100 (1-XT/XC). To compare the differences between epg, the data were transformed to log(x+1) and subjected to an ANOVA to compare the significant differences between groups by Tukey's. The level of significance was P<0.05. The free (4 mg/ml concentration) and nanoencapsulated (2mg/ml concentration) EcEO inhibited larvae hatching by 97.2% and 92.8%, respectively. Free and nanoencapsulated EcEO at 8 mg/ml inhibited larval development by 99.8% and 98.1%, respectively. In the acute toxicity test, the LD10 and LD50 of free EcEO was 1999 and 2653 mg/kg, respectively, while the LD10 and LD50 of nanoencapsulated EcEO was 1121 and 1681 mg/kg, respectively. Nanoencapsulated and free EcEO reduced FEC similarly by 40.5% and 55.9%, respectively at 10 days post-treatment. Nanoencapsulated EcEO did not obtain the expected efficacy in vivo.


Assuntos
Anti-Helmínticos/uso terapêutico , Eucalyptus/química , Hemoncose/veterinária , Enteropatias Parasitárias/tratamento farmacológico , Óleos Voláteis/farmacologia , Doenças dos Ovinos/tratamento farmacológico , Monoterpenos Acíclicos , Aldeídos/química , Aldeídos/farmacologia , Animais , Quitosana/química , Fezes/parasitologia , Feminino , Hemoncose/tratamento farmacológico , Haemonchus/efeitos dos fármacos , Larva/efeitos dos fármacos , Mentol/química , Mentol/farmacologia , Camundongos , Monoterpenos/química , Monoterpenos/farmacologia , Nanopartículas , Óleos Voláteis/química , Óvulo/efeitos dos fármacos , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...