Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(8): 5759-66, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23882831

RESUMO

Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 degrees C for 3 hours. As the annealing temperature was raised from 300 to 900 degrees C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometry studies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO.

2.
Appl Opt ; 51(30): 7395-401, 2012 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-23089797

RESUMO

A laser induced breakdown spectroscopic (LIBS) system was developed using a 266 nm laser and a high-resolution spectrograph (Andor SR 500 i-A) to detect the trace levels of the highly toxic metals such as lead and chromium present in different brands of talcum powder available in the local market. The strongest atomic transition lines of lead (Pb) (405.7 nm) and chromium (Cr) (425.4 nm) were used as spectral markers to simultaneously detect lead and chromium. The LIBS system was calibrated for these two heavy metals, and the system was able to detect 15-20 parts per million (ppm) of lead and 20-30 ppm of chromium in the talcum powder sample. The limits of detection of the LIBS system were also estimated, and they are 1.96 and 1.72 ppm per million respectively for lead and chromium. This study is highly significant due to the use of cosmetic products that could affect the health of millions of people around the globe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...