Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Immunohorizons ; 8(3): 214-226, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427047

RESUMO

Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and virus immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination in humans. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the TLRs, B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Epitopos , Desenvolvimento de Vacinas
3.
J Med Virol ; 96(1): e29408, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258331

RESUMO

Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Alumínio , Enzima de Conversão de Angiotensina 2 , Infecções Irruptivas , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2
4.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961687

RESUMO

Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the toll-like receptors (TLRs), B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.

5.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37904941

RESUMO

Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.

7.
Biosens Bioelectron ; 229: 115228, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963325

RESUMO

Rapid, sensitive, and inexpensive point-of-care diagnosis is vital to controlling highly infectious diseases, including COVID-19. Here, we report the design and characterization of a compact fluorimeter called a "Virus Pod" (V-Pod) that enables sensitive self-testing of SARS-CoV-2 viral load in saliva. The rechargeable battery-operated device reads the fluorescence generated by Designer DNA Nanostructures (DDN) when they specifically interact with intact SARS-CoV-2 virions. DDNs are net-shaped self-assembling nucleic acid constructs that provide an array of highly specific aptamer-fluorescent quencher duplexes located at precise positions that match the pattern of spike proteins. The room-temperature assay is performed by mixing the test sample with DNA Net sensor in a conventional PCR tube and placing the tube into the V-Pod. Fluorescent signals are generated when multivalent aptamer-spike binding releases fluorescent quenchers, resulting in rapid (5-min) generation of dose-dependent output. The V-Pod instrument performs laser excitation, fluorescence intensity quantitation, and secure transmission of data to an App via Bluetooth™. We show that the V-Pod and DNA Net assay achieves clinically relevant detection limits of 3.92 × 103 viral-genome-copies/mL for pseudo-typed wild-type SARS-CoV-2 and 1.84 × 104, 9.69 × 104, 6.99 × 104 viral-genome-copies/mL for pathogenic Delta, Omicron, and D614G variants, representing sensitivity similar to laboratory-based PCR. The pocket-sized instrument (∼$294), inexpensive reagent-cost/test ($1.26), single-step, rapid sample-to-answer, and quantitative output represent a capability that is compatible with the needs of frequent self-testing in a consumer-friendly format that can link with medical service systems such as healthcare providers, contact tracing, and infectious disease reporting.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Smartphone , Técnicas Biossensoriais/métodos , DNA , Sensibilidade e Especificidade
8.
J Am Chem Soc ; 145(37): 20214-20228, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35881910

RESUMO

We present a net-shaped DNA nanostructure (called "DNA Net" herein) design strategy for selective recognition and high-affinity capture of intact SARS-CoV-2 virions through spatial pattern-matching and multivalent interactions between the aptamers (targeting wild-type spike-RBD) positioned on the DNA Net and the trimeric spike glycoproteins displayed on the viral outer surface. Carrying a designer nanoswitch, the DNA Net-aptamers release fluorescence signals upon virus binding that are easily read with a handheld fluorimeter for a rapid (in 10 min), simple (mix-and-read), sensitive (PCR equivalent), room temperature compatible, and inexpensive (∼$1.26/test) COVID-19 test assay. The DNA Net-aptamers also impede authentic wild-type SARS-CoV-2 infection in cell culture with a near 1 × 103-fold enhancement of the monomeric aptamer. Furthermore, our DNA Net design principle and strategy can be customized to tackle other life-threatening and economically influential viruses like influenza and HIV, whose surfaces carry class-I viral envelope glycoproteins like the SARS-CoV-2 spikes in trimeric forms.


Assuntos
COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2 , DNA , Ligação Proteica
9.
Front Immunol ; 13: 984476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36159872

RESUMO

Regulatory T cells that express the transcription factor Foxp3 (Treg cells) are a highly heterogenous population of immunoregulatory cells critical for maintaining immune homeostasis and preventing immunopathology during infections. Tissue resident Treg (TR-Treg) cells are maintained within nonlymphoid tissues and have been shown to suppress proinflammatory tissue resident T cell responses and promote tissue repair. Human populations are repetitively exposed to influenza infections and lung tissue resident effector T cell responses are associated with flu-induced long-term pulmonary sequelae. The kinetics of TR-Treg cell development and molecular features of TR-Treg cells during repeated and/or long-term flu infections are unclear. Utilizing a Foxp3RFP/IL-10GFP dual reporter mouse model along with intravascular fluorescent in vivo labeling, we characterized the TR-Treg cell responses to repetitive heterosubtypic influenza infections. We found lung tissue resident Treg cells accumulated and expressed high levels of co-inhibitory and co-stimulatory receptors post primary and secondary infections. Blockade of PD-1 or ICOS signaling reveals that PD-1 and ICOS signaling pathways counter-regulate TR-Treg cell expansion and IL-10 production, during secondary influenza infection. Furthermore, the virus-specific TR-Treg cell response displayed distinct kinetics, when compared to conventional CD4+ tissue resident memory T cells, during secondary flu infection. Our results provide insight into the tissue resident Foxp3+ regulatory T cell response during repetitive flu infections, which may be applicable to other respiratory infectious diseases such as tuberculosis and COVID.


Assuntos
COVID-19 , Animais , Fatores de Transcrição Forkhead/metabolismo , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucina-10 , Camundongos , Infecções por Orthomyxoviridae , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores
10.
Viruses ; 14(3)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35337047

RESUMO

The SARS-CoV-2 spike protein mediates target recognition, cellular entry, and ultimately the viral infection that leads to various levels of COVID-19 severities. Positive evolutionary selection of mutations within the spike protein has led to the genesis of new SARS-CoV-2 variants with greatly enhanced overall fitness. Given the trend of variants with increased fitness arising from spike protein alterations, it is critical that the scientific community understand the mechanisms by which these mutations alter viral functions. As of March 2022, five SARS-CoV-2 strains were labeled "variants of concern" by the World Health Organization: the Alpha, Beta, Gamma, Delta, and Omicron variants. This review summarizes the potential mechanisms by which the common mutations on the spike protein that occur within these strains enhance the overall fitness of their respective variants. In addressing these mutations within the context of the SARS-CoV-2 spike protein structure, spike/receptor binding interface, spike/antibody binding, and virus neutralization, we summarize the general paradigms that can be used to estimate the effects of future mutations along SARS-CoV-2 evolution.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteínas de Membrana , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...