Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(47): e2305574120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956282

RESUMO

We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.

2.
PLoS One ; 17(8): e0273065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36007084

RESUMO

A large volume of freshwater is incorporated in the relatively fresh (salinity ~32-33) Pacific Ocean waters that are transported north through the Bering Strait relative to deep Atlantic salinity in the Arctic Ocean (salinity ~34.8). These freshened waters help maintain the halocline that separates cold Arctic surface waters from warmer Arctic Ocean waters at depth. The stable oxygen isotope composition of the Bering Sea contribution to the upper Arctic Ocean halocline was established as early as the late 1980's as having a δ18OV-SMOW value of approximately -1.1‰. More recent data indicates a shift to an isotopic composition that is more depleted in 18O (mean δ18O value ~-1.5‰). This shift is supported by a data synthesis of >1400 water samples (salinity from 32.5 to 33.5) from the northern Bering and Chukchi seas, from the years 1987-2020, which show significant year-to-year, seasonal and regional variability. This change in the oxygen isotope composition of water in the upper halocline is consistent with observations of added freshwater in the Canada Basin, and mooring-based estimates of increased freshwater inflows through Bering Strait. Here, we use this isotopic time-series as an independent means of estimating freshwater flux changes through the Bering Strait. We employed a simple end-member mixing model that requires that the volume of freshwater (including runoff and other meteoric water, but not sea ice melt) flowing through Bering Strait has increased by ~40% over the past two decades to account for a change in the isotopic composition of the 33.1 salinity water from a δ18O value of approximately -1.1‰ to a mean of -1.5‰. This freshwater flux change is comparable with independent published measurements made from mooring arrays in the Bering Strait (freshwater fluxes rising from 2000-2500 km3 in 2001 to 3000-3500 km3 in 2011).


Assuntos
Água Doce , Água , Regiões Árticas , Oceanos e Mares , Isótopos de Oxigênio
3.
Environ Sci Technol ; 55(17): 12066-12074, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34432459

RESUMO

Carbon dioxide (CO2) and methane (CH4) are natural and anthropogenic products that play a central role in the global carbon cycle and regulating Earth's climate. Applications utilizing laser absorption spectroscopy, which continuously measure concentrations and stable isotope ratios of these greenhouse gases, are routinely employed to measure the source and magnitude of atmospheric inputs. We developed a discrete sample introduction module (DSIM) to enable measurements of methane and CO2 concentrations and δ13C values from limited volume (5-100 mL) gas samples when interfaced with a commercially available cavity ring-down spectroscopy (CRDS) analyzer. The analysis has a dynamic range that spans six orders of magnitude from 100% analyte to the lower limit of instrument detection (2 ppm). We demonstrate system performance for methane by comparing concentrations and δ13C results from the DSIM-CRDS system and traditional methods for a variety of sample types, including low concentration (nanomolar CH4) seawater and high concentration (>90% CH4) natural gas. The expansive concentration range of the field-portable DSIM-CRDS system can measure enhances analytical performance for investigating methane and CO2 dynamics and, potentially, other gases measured by laser absorption spectroscopy.


Assuntos
Gases , Metano , Dióxido de Carbono , Isótopos de Carbono , Análise Espectral
4.
PLoS One ; 16(8): e0255686, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411125

RESUMO

The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus (Odobenus rosmarus divergens). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes (δ15N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.


Assuntos
Carbono , Dieta/métodos , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Camada de Gelo/química , Fitoplâncton/química , Morsas/fisiologia , Animais , Regiões Árticas , Biomarcadores , Mudança Climática , Ecossistema , Feminino , Lactação , Masculino , Estado Nutricional , Oceanos e Mares , Gravidez , Estações do Ano
5.
Ecol Evol ; 10(19): 10886-10898, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072303

RESUMO

Golden and Blueline Tilefish (Lopholatilus chamaeleonticeps and Caulolatilus microps) are keystone taxa in northwest (NW) Atlantic continental shelf-edge environments due to their biotic (trophic-mediated) and abiotic (ecosystem engineering) functional roles combined with high-value fisheries. Despite this importance, the ecological niche dynamics (i.e., those relating to trophic behavior and food-web interactions) of these sympatric species are poorly understood, knowledge of which may be consequential for maintaining both ecosystem function and fishery sustainability. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to build realized ecological niche hypervolumes to serve as proxies for diet and production use patterns of L. chamaeleonticeps and C. microps. We hypothesized that: (a) species exhibit ontogenetic shifts in diet and use of production sources; (b) species acquire energy from spatially distinct resource pools that reflect a sedentary life-history and differential use of the continental shelf-edge; and (c) species exhibit differentiation in one or more measured niche axes. We found evidence for ontogenetic shifts in diet (δ15N) but not production source (δ13C) in both species, suggesting a subtle expansion of measured ecological niche axes. Spatial interpolation of stable isotope ratios showed distinct latitudinal gradients; for example, individuals were 13C enriched in northern and 15N enriched in southern regions, supporting the assertion that tilefish species acquire energy from regional resource pools. High isotopic overlap was observed among species (≥82%); however, when hypervolumes included depth and region of capture, overlap among species substantially decreased to overlap estimates of 15%-77%. This suggests that spatial segregation could alleviate potential competition for resources among tilefish species inhabiting continental shelf-edge environments. Importantly, our results question the consensus interpretation of isotopic overlap estimates as representative of direct competition among species for shared resources or habitats, instead identifying habitat segregation as a possible mechanism for coexistence of tilefish species in the NW Atlantic.

6.
PeerJ ; 6: e4824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844976

RESUMO

Invasive species management can be a victim of its own success when decades of effective control cause memories of past harm to fade and raise questions of whether programs should continue. Economic analysis can be used to assess the efficiency of investing in invasive species control by comparing ecosystem service benefits to program costs, but only if appropriate data exist. We used a case study of water hyacinth (Eichhornia crassipes (Mart.) Solms), a nuisance floating aquatic plant, in Louisiana to demonstrate how comprehensive record-keeping supports economic analysis. Using long-term data sets, we developed empirical and spatio-temporal simulation models of intermediate complexity to project invasive species growth for control and no-control scenarios. For Louisiana, we estimated that peak plant cover would be 76% higher without the substantial growth rate suppression (84% reduction) that appeared due primarily to biological control agents. Our economic analysis revealed that combined biological and herbicide control programs, monitored over an unusually long time period (1975-2013), generated a benefit-cost ratio of about 34:1 derived from the relatively modest costs of $124 million ($2013) compared to the $4.2 billion ($2013) in benefits to anglers, waterfowl hunters, boating-dependent businesses, and water treatment facilities over the 38-year analysis period. This work adds to the literature by: (1) providing evidence of the effectiveness of water hyacinth biological control; (2) demonstrating use of parsimonious spatio-temporal models to estimate benefits of invasive species control; and (3) incorporating activity substitution into economic benefit transfer to avoid overstating benefits. Our study suggests that robust and cost-effective economic analysis is enabled by good record keeping and generalizable models that can demonstrate management effectiveness and promote social efficiency of invasive species control.

7.
Sci Rep ; 7(1): 13757, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061974

RESUMO

Anaerobic ammonium oxidizing (anammox) bacteria own a central position in the global N-cycle, as they have the ability to oxidize NH4+ to N2 under anoxic conditions using NO2-. They are responsible for up to 50% of all N2 released from marine ecosystems into the atmosphere and are thus indispensible for balancing the activity of N-fixing bacteria and completing the marine N-cycle. The contribution, diversity, and impact of anammox bacteria in freshwater ecosystems, however, is largely unknown, confounding assessments of their role in the global N-cycle. Here we report the activity and diversity of anammox bacteria in the world's largest freshwater lake-Lake Superior. We found that anammox performed by previously undiscovered bacteria is an important contributor to sediment N2 production. We observed striking differences in the anammox bacterial populations found at different locations within Lake Superior and those described from other locations. Our data thus reveal that novel anammox bacteria underpin N-loss from Lake Superior, and if more broadly distributed across inland waters would play an important role in continental N-cycling and mitigation of fixed nitrogen transfer from land to the sea.


Assuntos
Compostos de Amônio/metabolismo , Bactérias Anaeróbias/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Anaerobiose , Bactérias Anaeróbias/crescimento & desenvolvimento , Ecossistema , Ciclo do Nitrogênio , Oxirredução , Filogenia
8.
Proc Natl Acad Sci U S A ; 105(41): 15938-43, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18838679

RESUMO

Considerable discussion surrounds the potential role of anoxygenic phototrophic Fe(II)-oxidizing bacteria in both the genesis of Banded Iron Formations (BIFs) and early marine productivity. However, anoxygenic phototrophs have yet to be identified in modern environments with comparable chemistry and physical structure to the ancient Fe(II)-rich (ferruginous) oceans from which BIFs deposited. Lake Matano, Indonesia, the eighth deepest lake in the world, is such an environment. Here, sulfate is scarce (<20 micromol x liter(-1)), and it is completely removed by sulfate reduction within the deep, Fe(II)-rich chemocline. The sulfide produced is efficiently scavenged by the formation and precipitation of FeS, thereby maintaining very low sulfide concentrations within the chemocline and the deep ferruginous bottom waters. Low productivity in the surface water allows sunlight to penetrate to the >100-m-deep chemocline. Within this sulfide-poor, Fe(II)-rich, illuminated chemocline, we find a populous assemblage of anoxygenic phototrophic green sulfur bacteria (GSB). These GSB represent a large component of the Lake Matano phototrophic community, and bacteriochlorophyll e, a pigment produced by low-light-adapted GSB, is nearly as abundant as chlorophyll a in the lake's euphotic surface waters. The dearth of sulfide in the chemocline requires that the GSB are sustained by phototrophic oxidation of Fe(II), which is in abundant supply. By analogy, we propose that similar microbial communities, including populations of sulfate reducers and photoferrotrophic GSB, likely populated the chemoclines of ancient ferruginous oceans, driving the genesis of BIFs and fueling early marine productivity.


Assuntos
Chlorobi/metabolismo , Meio Ambiente , Microbiologia da Água , Anaerobiose , Archaea , Indonésia , Ferro/metabolismo , Luz , Biologia Marinha , Dados de Sequência Molecular , Oxirredução , Sulfetos , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...