Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 52: 232-242, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557615

RESUMO

Oligosaccharides present in human breast milk have been linked to beneficial effects on infant health. Inclusion of these human milk oligosaccharides (HMOs) in infant formula can recapitulate these health benefits. As a result, there is substantial commercial interest in a cost-effective source of HMOs as infant formula ingredients. Here we demonstrate that the yeast species Saccharomyces cerevisiae and Yarrowia lipolytica both can be engineered to produce 2'-fucosyllactose (2'FL), which is the most abundant oligosaccharide in human breast milk, at high titer and productivity. Both yeast species were modified to enable uptake of lactose and synthesis of GDP-fucose - the two precursors of 2'FL - by installing a lactose transporter and enzymes that convert GDP-mannose to GDP-fucose. Production of 2'FL was then enabled by expression of α-1,2-fucosyltransferases from various organisms. By screening candidate transporters from a variety of sources, we identified transporters capable of exporting 2'FL from yeast, which is a key consideration for any biocatalyst for 2'FL production. In particular, we identified CDT2 from Neurospora crassa as a promising target for further engineering to improve 2'FL efflux. Finally, we demonstrated production of 2'FL in fermenters at rates and titers that indicate the potential of engineered S. cerevisiae and Y. lipolytica strains for commercial 2'FL production.


Assuntos
Engenharia Metabólica/métodos , Leite Humano/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trissacarídeos/biossíntese , Yarrowia/genética , Yarrowia/metabolismo , Feminino , Fermentação , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Guanosina Difosfato Fucose/biossíntese , Humanos , Lactose/biossíntese , Neurospora crassa/genética , Neurospora crassa/metabolismo , Galactosídeo 2-alfa-L-Fucosiltransferase
2.
Fungal Genet Biol ; 45(3): 180-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17656140

RESUMO

An acyl-CoA dehydrogenase has been identified as part of the mitochondrial beta-oxidation pathway in the ascomycete fungus Aspergillus nidulans. Disruption of the scdA gene prevented use of butyric acid (C(4)) and hexanoic acid (C(6)) as carbon sources and reduced cellular butyryl-CoA dehydrogenase activity by 7.5-fold. While the mutant strain exhibited wild-type levels of growth on erucic acid (C(22:1)) and oleic acid (C(18:1)), some reduction in growth was observed with myristic acid (C(14)). The DeltascdA mutation was found to be epistatic to a mutation downstream in the beta-oxidation pathway (disruption of enoyl-CoA hydratase). The DeltascdA mutant was also unable to use isoleucine or valine as a carbon source. Transcription of scdA was observed in the presence of either fatty acids or amino acids. When the mutant was grown in medium containing either isoleucine or valine, organic acid analysis of culture supernatants showed accumulation of 2-oxo acid intermediates of branched chain amino acid catabolism, suggesting feedback inhibition of the upstream branched-chain alpha-keto acid dehydrogenase.


Assuntos
Acil-CoA Desidrogenases/metabolismo , Aspergillus nidulans/metabolismo , Ácidos Graxos/metabolismo , Isoleucina/metabolismo , Valina/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Acil-CoA Desidrogenases/genética , Aspergillus nidulans/genética , Ácidos Erúcicos/química , Ácidos Erúcicos/metabolismo , Ácidos Graxos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Teste de Complementação Genética , Isoleucina/química , Estrutura Molecular , Mutação , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Oxirredução , Transcrição Gênica
3.
Chem Biol ; 13(1): 31-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16426969

RESUMO

The genus Aspergillus is renowned for its ability to produce a myriad of bioactive secondary metabolites. Although the propensity of biosynthetic genes to form contiguous clusters greatly facilitates assignment of putative secondary metabolite genes in the completed Aspergillus genomes, such analysis cannot predict gene expression and, ultimately, product formation. To circumvent this deficiency, we have examined Aspergillus nidulans microarrays for expressed secondary metabolite gene clusters by using the transcriptional regulator LaeA. Deletion or overexpression of laeA clearly identified numerous secondary metabolite clusters. A gene deletion in one of the clusters eliminated the production of the antitumor compound terrequinone A, a metabolite not described, from A. nidulans. In this paper, we highlight that LaeA-based genome mining helps decipher the secondary metabolome of Aspergilli and provides an unparalleled view to assess secondary metabolism gene regulation.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Produtos Biológicos/genética , Genes Fúngicos/genética , Genômica , Produtos Biológicos/isolamento & purificação , Regulação Fúngica da Expressão Gênica/genética , Indóis/química , Indóis/metabolismo , Estrutura Molecular , Família Multigênica/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos
4.
Mol Plant Microbe Interact ; 18(8): 783-93, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16134890

RESUMO

Seed contamination with polyketide mycotoxins, including aflatoxin (AF) and sterigmatocystin (ST) produced by Aspergillus spp., is an agricultural, economic, and medical issue worldwide. Acetyl-CoA, the fundamental building block of all known fungal polyketides, is generated by a large number of biochemical pathways, including beta-oxidation of fatty acids and glycolysis of sugars. We present several lines of evidence to support a major role for seed fatty acids in formation of AF and ST in A. flavus, A. parasiticus, and A. nidulans. Aspergillus strains exhibiting canonical signs of oleic acid-induced peroxisome proliferation, including increased catalase activity, beta-oxidation gene expression, and peroxisomal clustering, also exhibited a marked increase in toxin gene expression and biosynthesis. Furthermore, microscopic observations showed that the ST and AF precursor norsolorinic acid accumulated in peroxisomes of all three Aspergilli. While a peroxisomal beta-oxidation mutation eliminated oleic acid-induced increases in ST in A. nidulans, a mitochondrial beta-oxidation mutation played a larger role in eliminating ST formation on oatmeal medium and on live corn kernels, implicating a fundamental role for both peroxisomal and mitochondrial beta-oxidation in toxin production.


Assuntos
Aflatoxinas/biossíntese , Aspergillus/metabolismo , Ácidos Graxos/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Esterigmatocistina/biossíntese , Antraquinonas/metabolismo , Aspergillus/citologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Mutação , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Peroxissomos/metabolismo , Transcrição Gênica
5.
Mol Microbiol ; 54(5): 1173-85, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15554960

RESUMO

Beta-oxidation (beta-ox) occurs exclusively in the peroxisomes of Saccharomyces cerevisiae and other yeasts, leading to the supposition that fungi lack mitochondrial beta-ox. Here we present unequivocal evidence that the filamentous fungus Aspergillus nidulans houses both peroxisomal and mitochondrial beta-ox. While growth of a peroxisomal beta-ox disruption mutant (DeltafoxA) was eliminated on a very long-chain fatty acid (C(22:1)), growth was only partially impeded on a long-chain fatty acid (C(18:1)) and was not affected at all on short chain (C4-C6) fatty acids. In contrast, growth of a putative enoyl-CoA hydratase mutant (DeltaechA) was abolished on short-chain and severely restricted on long- and very long-chain fatty acids. Furthermore fatty acids inhibited growth of the DeltaechA mutant but not the DeltafoxA mutant in the presence of an alternate carbon source (lactose). Disruption of echA led to a 28-fold reduction in 2-butenoyl-CoA hydratase activity in a preparation of organelles. EchA was also required for growth on isoleucine and valine. The subcellular localization of the FoxA and EchA proteins was confirmed through the use of red and green fluorescent protein fusions.


Assuntos
Aspergillus nidulans/enzimologia , Ácidos Graxos/metabolismo , Mitocôndrias/enzimologia , Complexos Multienzimáticos/isolamento & purificação , Acil Coenzima A/metabolismo , Aspergillus nidulans/química , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Deleção de Genes , Genes Fúngicos , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Isoleucina/metabolismo , Lactose/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Mitocôndrias/metabolismo , Proteína Mitocondrial Trifuncional , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxirredução , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Valina/metabolismo , Proteína Vermelha Fluorescente
6.
Microbiology (Reading) ; 150(Pt 5): 1385-1395, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15133100

RESUMO

In Salmonella enterica, the last step of the synthesis of adenosylcobamide is catalysed by the cobalamin synthase enzyme encoded by the cobS gene of this bacterium. Overexpression of the S. enterica cobS gene in Escherichia coli elicited the accumulation of the phage shock protein PspA, a protein whose expression has been linked to membrane stress. Resolution of inner and outer membranes of S. enterica by isopycnic density ultracentrifugation showed CobS activity associated with the inner membrane, a result that was confirmed using antibodies against CobS. Computer analysis of the predicted amino acid sequence of CobS suggested it was an integral membrane protein. Results of experiments performed with strains carrying plasmids encoding CobS-alkaline phosphatase or CobS-beta-galactosidase protein fusions were consistent with the membrane localization of the CobS protein. Modifications to the predicted model were made based on data obtained from experiments using protein fusions. The function encoded by the cobS orthologue in the methanogenic archaeon Methanobacterium thermoautotrophicum strain deltaH compensated for the lack of CobS during cobalamin synthesis in cobS strains of S. enterica. Cobalamin synthase activity was also detected in a membrane preparation of M. thermoautotrophicum. It was concluded that the assembly of the nucleotide loop of adenosylcobamides in archaea and bacteria is a membrane-associated process. Possible reasons for the association of adenosylcobamide biosynthetic enzymes with the cell membrane are discussed.


Assuntos
Membrana Celular/enzimologia , Cobamidas/biossíntese , Escherichia coli/enzimologia , Methanobacterium/enzimologia , Transferases de Grupos Nitrogenados/metabolismo , Salmonella enterica/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transferases de Grupos Nitrogenados/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ultracentrifugação
7.
Org Lett ; 5(13): 2211-3, 2003 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-12816411

RESUMO

Dimethylbezimidazole, the axial ligand of vitamin B(12), is synthesized from riboflavin by a two-electron oxidation, a retro-aldol condensation, and a second two-electron oxidation. This oxidative cascade readily takes place nonenzymatically under physiological conditions. [reaction: see text]


Assuntos
Benzimidazóis/síntese química , Cobamidas/metabolismo , Benzimidazóis/química , Benzimidazóis/metabolismo , Cromatografia Líquida de Alta Pressão , Ligantes , Oxirredução , Riboflavina/química
8.
Microbiology (Reading) ; 149(Pt 4): 983-990, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12686640

RESUMO

The CobT enzyme of Salmonella typhimurium was shown in vitro to have NAD(+)-dependent ADPribosyltransferase activity. The CobT enzyme transferred the ADPribosyl moiety of NAD(+) onto 5,6-dimethylbenzimidazole (DMB) yielding a new dinucleotide, namely alpha-5,6-dimethylbenzimidazole adenine dinucleotide (alpha-DAD), whose identity was established by mass spectrometry. The N(1)-(alpha-D-ribosyl)-5,6-dimethylbenzimidazoyl moiety (alpha-ribazole) of alpha-DAD was incorporated into adenosylcobalamin (AdoCbl) by cell-free extracts of S. typhimurium, indicating that alpha-DAD served as an intermediate of AdoCbl biosynthesis. The rate of transfer of the ADPribosyl moiety was slower than the rate of transfer of the phosphoribosyl moiety of nicotinate mononucleotide (NaMN) to DMB. The CobT enzyme displayed a low K(m) for NaMN (0.51 mM) relative to the one for NAD(+) (9 mM); nicotinate adenine dinucleotide (NaAD) and nicotinamide mononucleotide (NMN) also served as substrates for CobT. In spite of the high K(m) of CobT for NAD(+), the latter is proposed to be a relevant physiological substrate of CobT, given that the intracellular concentrations of NaMN, NMN and NaAD in actively growing S. typhimurium are undetectable. Evidence shows that extracts of S. typhimurium contain an as-yet unidentified dinucleotide pyrophosphatase that can cleave alpha-DAD into alpha-ribazole-5'-P and AMP; alpha-ribazole-5'-P can then enter the AdoCbl biosynthetic pathway.


Assuntos
ADP Ribose Transferases/metabolismo , Nucleotídeos de Adenina/metabolismo , Benzimidazóis/metabolismo , Complexos Multienzimáticos/metabolismo , Nucleotidiltransferases/metabolismo , Pentosiltransferases/metabolismo , Salmonella typhimurium/enzimologia , Vitamina B 12/biossíntese , Cobamidas/metabolismo , Cinética , NAD/metabolismo , Ribonucleotídeos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...