Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358116

RESUMO

Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 µg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.

2.
J Contam Hydrol ; 250: 104064, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35994843

RESUMO

Rivers are the route of transfer of microplastics from upstream to downstream areas and seas. Microplastic tracing in river sediments can provide a better reflection of long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in the Torghabeh River sediments in Khorasan Razavi (Iran). Sediment samples were collected from four sites along the river. Microplastic particles were classified according to type, shape, and color. The average microplastic concentration was 8 ± 2.82 particles per 100 g of dry sediments. Most of the microplastics detected in river sediments were in the form of filaments and fragments. A total of 32 polymers were identified and isolated from sediments. According to Raman spectroscopy results, polystyrene had the highest abundance compared to polyester, polyethylene, and other polymers. The predominant shape of the microplastics in the river sediment was filament and fragmented. It can be concluded that the areas that were exposed to human activity contained more microplastic contamination. The present investigation can also provide baseline information for the study of riverine ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Irã (Geográfico) , Plásticos/química , Poliésteres , Polietileno , Poliestirenos , Poluentes Químicos da Água/análise
3.
Environ Res ; 208: 112725, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063433

RESUMO

Microplastics (MP) are an emerging and lesser-known pollutant that has attracted the attention of researchers around the world in recent decades. Size of PM is smaller than 5 mm and can be entered in different ways into marine environments like mangrove forests and interfere with the health of the environment and organisms. The present study reviews 53 studies in the field of microplastics in different parts (sediments and organisms) of mangrove forests. About 26% of the 53 studies was published in 2020. In most studies, MP particles were categorized based on the shape, color, size, and polymer genus. The number of microplastics per kilogram of mangrove sediments has been reported as 1.22-6390. The effect of sediment texture on the frequency of microplastic particles and the relationship between sediment pH and MP abundance were also discussed. The fiber and bright color PMs were more common in living organisms (mollusks, crustaceans, and fish). The PM particles with different genus (polypropylene, polyethylene, polystyrene, and polyethylene terephthalate) were reported for sediment samples. In sediments with smaller sizes and lower pH, microplastics have been detected more frequently. It was reported that sediments and roots of mangrove forests act as livestock and retain microplastics for a long time. The highest concentration of MP in different parts of mangrove forests (sediment and organisms) has been reported for China. Few reports were observed on microplastics in water in mangrove forests. Also, the concentration of microplastics in sediments and organisms in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater was higher than those in pristine areas. It is necessary to conduct comprehensive studies to monitor, control, and evaluate the MP pollution in sediments and various organisms in mangrove forests worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos/química , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análise , Áreas Alagadas
4.
Chemosphere ; 264(Pt 2): 128543, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33059284

RESUMO

This investigation was aimed to identify microplastics in the sediment and mudskipper fish (Periophthalmus waltoni) in mangrove forests in southern Iran. Sediments and mudskipper samples were collected at high, mid, and low tidal points of five stations. A total of 2657 plastic particles in different size, color, shape, and genera were identified from sediment samples and 15 microplastic were isolated from mudskippers. The highest and lowest abundance of isolated microplastics from sediments was observed in mangrove forests of Bidkhoun (urban area) and Bordkhon, respectively while no microplastics were found in the fish tissue in those stations. The black (60%) and white (7%) color microplastics in the mudskipper had the highest and the lowest frequency. The highest and lowest polymers in mangrove forest sediments were corresponded to polystyrene (26%) and polycarbonate (3%), respectively. Raman and Fourier transform infrared spectroscopy (FT-IR) techniques were used to identify the type of the polymer. Most of the microplastics found were made of polystyrene, polypropylene, and polyethylene terephthalate. The type of studied area and texture of sediment separately affected the frequency of microplastic and mesoplastic (P-value <0.05) in the sediment samples. The abundance of microplastics in the sediment samples of the Bidkhoun mangrove forest was higher than other studied stations due to proximity to urban and industrial areas. The findings of this study raised concerns about microplastic pollution in the mangrove forests of southern Iran, a threat to the ecosystem and public health, which requires careful actions to prevent and diminish its adverse effects.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Irã (Geográfico) , Microplásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...