Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36992757

RESUMO

Athletic competitions and the associated psychological stress are a challenge for people with type 1 diabetes (T1D). This study aims to understand the influence of anticipatory and early race competition stress on blood glucose concentrations and to identify personality, demographic, or behavioral traits indicative in the scope of the impact. Ten recreational athletes with T1D competed in an athletic competition and an exercise-intensity matched non-competition "training" session for comparison. The two hours prior to exercise and the first 30 minutes of exercise were compared between the paired exercise sessions to assess the influence of anticipatory and early race stress. The effectiveness index, average CGM glucose, and the ingested carbohydrate to injected insulin ratio were compared between the paired sessions through regression. In 9 of 12 races studied, an elevated CGM for the race over the individual training session was observed. The rate of change of the CGM during the first 30 minutes of exercise notably differed between the race and training (p = 0.02) with a less rapid decline in CGM occurring during the race for 11 of 12 paired sessions and an increasing CGM trend during the race for 7 of the 12 sessions with the rate of change (mean ± standard deviation) as 1.36 ± 6.07 and -2.59 ± 2.68 mg/dL per 5 minutes for the race and training, respectively. Individuals with longer durations of diabetes often decreased their carbohydrate-to-insulin ratio on race day, taking more insulin, than on the training day while the reverse was noted for those newly diagnosed (r = -0.52, p = 0.05). The presence of athletic competition stress can impact glycemia. With an increasing duration of diabetes, the athletes may be expecting elevated competition glucose concentrations and take preventive measures.

2.
Adv Mater ; 32(50): e2004028, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33169392

RESUMO

The main drawbacks of today's state-of-the-art lithium-air (Li-air) batteries are their low energy efficiency and limited cycle life due to the lack of earth-abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3 P) nanoparticles with an exceptional activity-ORR and OER current densities of 7.21 and 6.85 mA cm-2 at 2.0 and 4.2 V versus Li/Li+ , respectively-in an oxygen-saturated non-aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance-Tafel slopes of 35 and 38 mV dec-1 for ORR and OER, respectively-resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li-air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3 P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...