Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20049, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974015

RESUMO

As the number of smartphones increases, so does the number of medical apps. Medical mobile applications are widely used in many medical fields by both patients and doctors. However, there are still few approved mobile applications that can be used in the diagnostic-therapeutic process and radiological apps are affected as well. We conducted our research by classifying radiological applications from the Google Play® store into appropriate categories, according to our own qualification system developed by researchers for the purposes of this study. In addition, we also evaluated apps from the App Store®. The radiology application rating system we created has not been previously used in other articles. Out of 228 applications from the Google Play store, only 6 of them were classified as "A" category with the highest standard. Apps from the App Store (157) were not categorized due to the lack of download counts, which was necessary in our app-rating system. The vast majority of applications are for educational purposes and are not used in clinical practice. This is due to the need of obtaining special permits and certificates from relevant institutions in order to use them in medical practice. We recommend applications from the Google Play store that have been classified in the "A" category, evaluating them as the most valuable. App Store apps data is described and presented in the form of diagrams and tables.


Assuntos
Aplicativos Móveis , Radiologia , Humanos , Polônia , Smartphone
2.
J Clin Med ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762783

RESUMO

Diagnostic imaging has become an integral part of the healthcare system. In recent years, scientists around the world have been working on artificial intelligence-based tools that help in achieving better and faster diagnoses. Their accuracy is crucial for successful treatment, especially for imaging diagnostics. This study used a deep convolutional neural network to detect four categories of objects on digital chest X-ray images. The data were obtained from the publicly available National Institutes of Health (NIH) Chest X-ray (CXR) Dataset. In total, 112,120 CXRs from 30,805 patients were manually checked for foreign objects: vascular port, shoulder endoprosthesis, necklace, and implantable cardioverter-defibrillator (ICD). Then, they were annotated with the use of a computer program, and the necessary image preprocessing was performed, such as resizing, normalization, and cropping. The object detection model was trained using the You Only Look Once v8 architecture and the Ultralytics framework. The results showed not only that the obtained average precision of foreign object detection on the CXR was 0.815 but also that the model can be useful in detecting foreign objects on the CXR images. Models of this type may be used as a tool for specialists, in particular, with the growing popularity of radiology comes an increasing workload. We are optimistic that it could accelerate and facilitate the work to provide a faster diagnosis.

3.
Diagnostics (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568945

RESUMO

Machine learning (ML), artificial neural networks (ANNs), and deep learning (DL) are all topics that fall under the heading of artificial intelligence (AI) and have gained popularity in recent years. ML involves the application of algorithms to automate decision-making processes using models that have not been manually programmed but have been trained on data. ANNs that are a part of ML aim to simulate the structure and function of the human brain. DL, on the other hand, uses multiple layers of interconnected neurons. This enables the processing and analysis of large and complex databases. In medicine, these techniques are being introduced to improve the speed and efficiency of disease diagnosis and treatment. Each of the AI techniques presented in the paper is supported with an example of a possible medical application. Given the rapid development of technology, the use of AI in medicine shows promising results in the context of patient care. It is particularly important to keep a close eye on this issue and conduct further research in order to fully explore the potential of ML, ANNs, and DL, and bring further applications into clinical use in the future.

4.
Healthcare (Basel) ; 10(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36292487

RESUMO

Despite the growing popularity of mobile devices, they still have not found widespread use in medicine. This is due to the procedures in a given place, differences in the availability of mobile devices between individual institutions or lack of appropriate legal regulations and accreditation by relevant institutions. Numerous studies have been conducted and compared the usability of mobile solutions designed for diagnostic images evaluation on various mobile devices and applications with classic stationary descriptive stations. This study is an attempt to compare the usefulness of currently available mobile applications which are used in the medical industry, focusing on imaging diagnostics. As a consequence of the healthcare sector's diversity, it is also not possible to design a universal mobile application, which results in a multitude of software available on the market and makes it difficult to reliably compile and compare studies included in this systematic review. Despite these differences, it was possible to identify both positive and negative features of portable methods analyzing radiological images. The mobile application of the golden mean in hospital infrastructure should be widely available, with convenient and simple usage. Our future research will focus on development in the use of mobile devices and applications in the medical sector.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...