Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354434

RESUMO

Since the onset of the SARS-CoV-2 pandemic, several COVID-19 detection methods, both commercially available and in the lab, have been developed using different biomolecules as analytes and different detection and sampling methods with high analytical performance. Developing novel COVID-19 detection assays is an exciting research field, as rapid accurate diagnosis is a valuable tool to control the current pandemic, and also because the acquired knowledge can be deployed for facing future infectious outbreaks. We here developed a novel gold-nanoparticle-based nucleic acid lateral flow assay for the rapid, visual, and quantitative detection of SARS-CoV-2. Our method was based on the use of a DNA internal standard (competitor) for quantification and involved RT-PCR, the hybridization of biotinylated PCR products to specific oligonucleotide probes, and detection with a dual lateral flow assay using gold nanoparticles conjugated to an anti-biotin antibody as reporters. The developed test allowed for rapid detection by the naked eye and the simultaneous quantification of SARS-CoV-2 in nasopharyngeal swabs with high specificity, detectability, and repeatability. This novel molecular strip test for COVID-19 detection represents a simple, cost-effective, and accurate rapid test that is very promising to be used as a future diagnostic tool.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Ouro , Pandemias , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...