Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EBioMedicine ; 103: 105143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691938

RESUMO

BACKGROUND: Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS: Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS: The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION: This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING: This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.


Assuntos
Argônio , Fármacos Neuroprotetores , Argônio/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Humanos , Animais , Administração por Inalação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos
2.
J Clin Med ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731027

RESUMO

Although cardiopulmonary resuscitation (CPR) includes lifesaving maneuvers, it might be associated with a wide spectrum of iatrogenic injuries. Among these, acute lung injury (ALI) is frequent and yields significant challenges to post-cardiac arrest recovery. Understanding the relationship between CPR and ALI is determinant for refining resuscitation techniques and improving patient outcomes. This review aims to analyze the existing literature on ALI following CPR, emphasizing prevalence, clinical implications, and contributing factors. The review seeks to elucidate the pathogenesis of ALI in the context of CPR, assess the efficacy of CPR techniques and ventilation strategies, and explore their impact on post-cardiac arrest outcomes. CPR-related injuries, ranging from skeletal fractures to severe internal organ damage, underscore the complexity of managing post-cardiac arrest patients. Chest compression, particularly when prolonged and vigorous, i.e., mechanical compression, appears to be a crucial factor contributing to ALI, with the concept of cardiopulmonary resuscitation-associated lung edema (CRALE) gaining prominence. Ventilation strategies during CPR and post-cardiac arrest syndrome also play pivotal roles in ALI development. The recognition of CPR-related lung injuries, especially CRALE and ALI, highlights the need for research on optimizing CPR techniques and tailoring ventilation strategies during and after resuscitation.

4.
Acta Anaesthesiol Scand ; 68(4): 556-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221650

RESUMO

BACKGROUND: Chest compression is a lifesaving intervention in out-of-hospital cardiac arrest (OHCA), but the optimal metrics to assess its quality have yet to be identified. The objective of this study was to investigate whether a new parameter, that is, the variability of the chest compression-generated transthoracic impedance (TTI), namely ImpCC , which measures the consistency of the chest compression maneuver, relates to resuscitation outcome. METHODS: This multicenter observational, retrospective study included OHCAs with shockable rhythm. ImpCC variability was evaluated with the power spectral density analysis of the TTI. Multivariate regression model was used to examine the impact of ImpCC variability on defibrillation success. Secondary outcome measures were return of spontaneous circulation and survival. RESULTS: Among 835 treated OHCAs, 680 met inclusion criteria and 565 matched long-term outcomes. ImpCC was significantly higher in patients with unsuccessful defibrillation compared to those with successful defibrillation (p = .0002). Lower ImpCC variability was associated with successful defibrillation with an odds ratio (OR) of 0.993 (95% confidence interval [95% CI], 0.989-0.998, p = .003), while the standard chest compression fraction (CCF) was not associated (OR 1.008 [95 % CI, 0.992-1.026, p = .33]). Neither ImpCC nor CCF was associated with long-term outcomes. CONCLUSIONS: In this population, consistency of chest compression maneuver, measured by variability in TTI, was an independent predictor of defibrillation outcome. ImpCC may be a useful novel metrics for improving quality of care in OHCA.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Humanos , Parada Cardíaca Extra-Hospitalar/terapia , Cardiografia de Impedância , Estudos Retrospectivos , Respiração Artificial
6.
Resuscitation ; 191: 109941, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625578

RESUMO

Amplitude spectrum area (AMSA) is one of the most accurate predictors of defibrillation outcome. Details on functioning and use of the available technology to measure AMSA during cardiopulmonary resuscitation (CPR) in the real clinical scenario are described. During chest compression (CC) pauses for ventilations, AMSA is promptly calculated and values displayed through a modified defibrillator. In addition, real-time AMSA analysis has the additional promise to monitor CPR quality, being AMSA threshold values contingent on CC depth. Future larger studies employing this new technology are now needed to demonstrate the impact of AMSA on survival of cardiac arrest.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Humanos , Cardioversão Elétrica , Fibrilação Ventricular , Amsacrina , Parada Cardíaca/terapia
7.
Anesthesiology ; 139(5): 628-645, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487175

RESUMO

BACKGROUND: The catabolism of the essential amino acid tryptophan to kynurenine is emerging as a potential key pathway involved in post-cardiac arrest brain injury. The aim of this study was to evaluate the effects of the modulation of kynurenine pathway on cardiac arrest outcome through genetic deletion of the rate-limiting enzyme of the pathway, indoleamine 2,3-dioxygenase. METHODS: Wild-type and indoleamine 2,3-dioxygenase-deleted (IDO-/-) mice were subjected to 8-min cardiac arrest. Survival, neurologic outcome, and locomotor activity were evaluated after resuscitation. Brain magnetic resonance imaging with diffusion tensor and diffusion-weighted imaging sequences was performed, together with microglia and macrophage activation and neurofilament light chain measurements. RESULTS: IDO-/- mice showed higher survival compared to wild-type mice (IDO-/- 11 of 16, wild-type 6 of 16, log-rank P = 0.036). Neurologic function was higher in IDO-/- mice than in wild-type mice after cardiac arrest (IDO-/- 9 ± 1, wild-type 7 ± 1, P = 0.012, n = 16). Indoleamine 2,3-dioxygenase deletion preserved locomotor function while maintaining physiologic circadian rhythm after cardiac arrest. Brain magnetic resonance imaging with diffusion tensor imaging showed an increase in mean fractional anisotropy in the corpus callosum (IDO-/- 0.68 ± 0.01, wild-type 0.65 ± 0.01, P = 0.010, n = 4 to 5) and in the external capsule (IDO-/- 0.47 ± 0.01, wild-type 0.45 ± 0.01, P = 0.006, n = 4 to 5) in IDO-/- mice compared with wild-type ones. Increased release of neurofilament light chain was observed in wild-type mice compared to IDO-/- (median concentrations [interquartile range], pg/mL: wild-type 1,138 [678 to 1,384]; IDO-/- 267 [157 to 550]; P < 0.001, n = 3 to 4). Brain magnetic resonance imaging with diffusion-weighted imaging revealed restriction of water diffusivity 24 h after cardiac arrest in wild-type mice; indoleamine 2,3-dioxygenase deletion prevented water diffusion abnormalities, which was reverted in IDO-/- mice receiving l-kynurenine (apparent diffusion coefficient, µm2/ms: wild-type, 0.48 ± 0.07; IDO-/-, 0.59 ± 0.02; IDO-/- and l-kynurenine, 0.47 ± 0.08; P = 0.007, n = 6). CONCLUSIONS: The kynurenine pathway represents a novel target to prevent post-cardiac arrest brain injury. The neuroprotective effects of indoleamine 2,3-dioxygenase deletion were associated with preservation of brain white matter microintegrity and with reduction of cerebral cytotoxic edema.


Assuntos
Lesões Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina , Imagem de Tensor de Difusão , Água
8.
Resuscitation ; 187: 109799, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37080335

RESUMO

Meta-analyses and systematic reviews (MSR) have been conceived as tools to summarize evidence on a specific health question. However, in the last years, an exaggerated number of MSRs published by scientific journals has been observed, i.e. 286 MSRs in the field of Resuscitation Science over the last 3 years, i.e. approximately 95 per year. Thus, doubts on the real scientific need of such a high number of MSRs may arise, potentially being only a way to rapidly improve authors' citation index and fame and sometimes the journals' impact factor.


Assuntos
Reanimação Cardiopulmonar , Fator de Impacto de Revistas , Humanos
9.
J Aerosol Med Pulm Drug Deliv ; 36(3): 112-126, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37083488

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflammatory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both the COVID-19-associated ARDS and the ARDS related to other causes-also defined as classical ARDS-are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since 1993 and it is currently under investigation. In this review, we aim at describing the biological and pharmacological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition, iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Óxido Nítrico , Administração por Inalação , SARS-CoV-2 , Síndrome do Desconforto Respiratório/tratamento farmacológico
10.
J Clin Med ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36983236

RESUMO

Cardiac arrest, one of the leading causes of death, accounts for numerous clinical studies published each year. This review summarizes the findings of all the randomized controlled clinical trials (RCT) on cardiac arrest published in the year 2022. The RCTs are presented according to the following categories: out-of- and in-hospital cardiac arrest (OHCA, IHCA) and post-cardiac arrest care. Interestingly, more than 80% of the RCTs encompassed advanced life support and post-cardiac arrest care, while no studies focused on the treatment of IHCA, except for one that, however, explored the temperature control after resuscitation in this population. Surprisingly, 9 out of 11 RCTs led to neutral results demonstrating equivalency between the newly tested interventions compared to current practice. One trial was negative, showing that oxygen titration in the immediate pre-hospital post-resuscitation period decreased survival compared to a more liberal approach. One RCT was positive and introduced new defibrillation strategies for refractory cardiac arrest. Overall, data from the 2022 RCTs discussed here provide a solid basis to generate new hypotheses to be tested in future clinical studies.

11.
EBioMedicine ; 90: 104544, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36977371

RESUMO

BACKGROUND: Ventricular fibrillation (VF) waveform analysis has been proposed as a potential non-invasive guide to optimize timing of defibrillation. METHODS: The AMplitude Spectrum Area (AMSA) trial is an open-label, multicenter randomized controlled study reporting the first in-human use of AMSA analysis in out-of-hospital cardiac arrest (OHCA). The primary efficacy endpoint was the termination of VF for an AMSA ≥ 15.5 mV-Hz. Adult shockable OHCAs randomly received either an AMSA-guided cardiopulmonary resuscitation (CPR) or a standard-CPR. Randomization and allocation to trial group were carried out centrally. In the AMSA-guided CPR, an initial AMSA ≥ 15.5 mV-Hz prompted for immediate defibrillation, while lower values favored chest compression (CC). After completion of the first 2-min CPR cycle, an AMSA < 6.5 mV-Hz deferred defibrillation in favor of an additional 2-min CPR cycle. AMSA was measured and displayed in real-time during CC pauses for ventilation with a modified defibrillator. FINDINGS: The trial was early discontinued for low recruitment due to the COVID-19 pandemics. A total of 31 patients were recruited in 3 Italian cities, 19 in AMSA-CPR and 12 in standard-CPR, and included in the data analysis. No difference in primary outcome was observed between the two groups. Termination of VF occurred in 74% of patients in the AMSA-CPR compared to 75% in the standard CPR (OR 0.93 [95% CI 0.18-4.90]). No adverse events were reported. INTERPRETATION: AMSA was used prospectively in human patients during ongoing CPR. In this small trial, an AMSA-guided defibrillation provided no evidence of an improvement in termination of VF. TRIAL REGISTRATION: NCT03237910. FUNDING: European Commission - Horizon 2020; ZOLL Medical Corp., Chelmsford, USA (unrestricted grant); Italian Ministry of Health - Current research IRCCS.


Assuntos
COVID-19 , Reanimação Cardiopulmonar , Adulto , Humanos , Fibrilação Ventricular/terapia , Cardioversão Elétrica , Amsacrina
12.
Intensive Care Med Exp ; 10(1): 28, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35754072

RESUMO

Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.

13.
Nitric Oxide ; 125-126: 47-56, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35716999

RESUMO

RATIONALE: Nitric oxide (NO) exerts its biological effects primarily via activation of guanylate cyclase (GC) and production of cyclic guanosine monophosphate. Inhaled NO improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CPR). However, mechanisms of the protective effects of breathing NO after cardiac arrest are incompletely understood. OBJECTIVE: To elucidate the mechanisms of beneficial effects of inhaled NO on outcomes after cardiac arrest. METHODS: Adult male C57BL/6J wild-type (WT) mice, GC-1 knockout mice, and chimeric WT mice with WT or GC-1 knockout bone marrow were subjected to 8 min of potassium-induced cardiac arrest to determine the role of GC-1 in bone marrow-derived cells. Mice breathed air or 40 parts per million NO for 23 h starting at 1 h after CPR. RESULTS: Breathing NO after CPR prevented hypercoagulability, cerebral microvascular occlusion, an increase in circulating polymorphonuclear neutrophils and neutrophil-to-lymphocyte ratio, and right ventricular dysfunction in WT mice, but not in GC-1 knockout mice, after cardiac arrest. The lack of GC-1 in bone marrow-derived cells diminished the beneficial effects of NO breathing after CPR. CONCLUSIONS: GC-dependent signaling in bone marrow-derived cells is essential for the beneficial effects of inhaled NO after cardiac arrest and CPR.


Assuntos
Parada Cardíaca , Óxido Nítrico , Animais , Medula Óssea , Guanilato Ciclase , Parada Cardíaca/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/farmacologia , Receptores de Superfície Celular
14.
Nitric Oxide ; 121: 20-33, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123061

RESUMO

Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.


Assuntos
Estado Terminal , Hipertensão Pulmonar/tratamento farmacológico , Doenças do Recém-Nascido/tratamento farmacológico , Óxido Nítrico/uso terapêutico , Vasodilatadores/uso terapêutico , Adulto , COVID-19/complicações , COVID-19/virologia , Humanos , Hipertensão Pulmonar/etiologia , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Óxido Nítrico/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Vasodilatadores/farmacologia , Tratamento Farmacológico da COVID-19
15.
Cardiovasc Drugs Ther ; 36(4): 727-738, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33098053

RESUMO

PURPOSE: Available animal models of acute heart failure (AHF) and their limitations are discussed herein. A novel and preclinically relevant porcine model of decompensated AHF (ADHF) is then presented. METHODS: Myocardial infarction (MI) was induced by occlusion of left anterior descending coronary artery in 17 male pigs (34 ± 4 kg). Two weeks later, ADHF was induced in the survived animals (n = 15) by occlusion of the circumflex coronary artery, associated with acute volume overload and increases in arterial blood pressure by vasoconstrictor infusion. After onset of ADHF, animals received 48-h iv infusion of either serelaxin (n = 9) or placebo (n = 6). The pathophysiology and progression of ADHF were described by combining evaluation of hemodynamics, echocardiography, bioimpedance, blood gasses, circulating biomarkers, and histology. RESULTS: During ADHF, animals showed reduced left ventricle (LV) ejection fraction < 30%, increased thoracic fluid content > 35%, pulmonary edema, and high pulmonary capillary wedge pressure ~ 30 mmHg (p < 0.01 vs. baseline). Other ADHF-induced alterations in hemodynamics, i.e., increased central venous and pulmonary arterial pressures; respiratory gas exchanges, i.e., respiratory acidosis with low arterial PO2 and high PCO2; and LV dysfunction, i.e., increased LV end-diastolic/systolic volumes, were observed (p < 0.01 vs. baseline). Representative increases in circulating cardiac biomarkers, i.e., troponin T, natriuretic peptide, and bio-adrenomedullin, occurred (p < 0.01 vs. baseline). Finally, elevated renal and liver biomarkers were observed 48 h after onset of ADHF. Mortality was ~ 50%. Serelaxin showed beneficial effects on congestion, but none on mortality. CONCLUSION: This new model, resulting from a combination of chronic and acute MI, and volume and pressure overload, was able to reproduce all the typical clinical signs occurring during ADHF in a consistent and reproducible manner.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Biomarcadores , Insuficiência Cardíaca/tratamento farmacológico , Hemodinâmica , Masculino , Infarto do Miocárdio/tratamento farmacológico , Volume Sistólico , Suínos , Vasodilatadores/uso terapêutico , Função Ventricular Esquerda
16.
Respir Physiol Neurobiol ; 296: 103807, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757207

RESUMO

OBJECTIVES: The exhaled CO2 signal provides guidance during cardiopulmonary resuscitation. The Airway opening index (AOI) has been recently used to quantify chest-compression (CC) induced expired CO2 oscillations. We aimed to determine whether levels of intrathoracic pressures developed during CC or parameters related to lung structure may affect AOI. METHODS: Secondary analysis of a randomized animal study (n = 12) in a porcine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) during ambulance transport. Animals were randomized to 18-min of manual or mechanical CCs. Changes in AOI and right atrial pressure (ΔRAP) were recorded during CCs in animals undergoing manual (n = 6) or mechanical (n = 6) CCs. Lung CT scan and measurement of the respiratory system compliance (Cpl,rs) were performed immediately after return of spontaneous circulation. RESULTS: Animals undergoing mechanical CCs had a lower AOI compared to animals treated with manual CCs (p < 0.001). AOI negatively correlated with the swings of intrathoracic pressure, as measured by the change in ΔRAP (ρ=-0.727, p = 0.007). AOI correlated with the lung density (ρ=-0.818, p = 0.001) and with the Cpl,rs (ρ = 0.676, p = 0.016). Animals with cardiopulmonary resuscitation associated lung edema (CRALE) (i.e. mean CT≥-500 HU) showed lower levels of AOI compared to animals without it (29 ± 12 % versus 50 ± 16 %, p = 0.025). CONCLUSIONS: Animals undergoing mechanical CCs had lower levels of AOI compared to animals undergoing manual CCs. A higher swing of intrathoracic pressure during CC, a denser and a stiffer lung were associated with an impaired CO2 exhalation during CC as observed by a lower AOI.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/terapia , Massagem Cardíaca , Sistema Respiratório/anatomia & histologia , Tórax/fisiologia , Animais , Modelos Animais de Doenças , Pulmão/anatomia & histologia , Distribuição Aleatória , Sistema Respiratório/diagnóstico por imagem , Suínos , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X
17.
J Am Heart Assoc ; 10(23): e021071, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816736

RESUMO

Background Brain injury and neurological deficit are consequences of cardiac arrest (CA), leading to high morbidity and mortality. Peripheral activation of the kynurenine pathway (KP), the main catabolic route of tryptophan metabolized at first into kynurenine, predicts poor neurological outcome in patients resuscitated after out-of-hospital CA. Here, we investigated KP activation in hippocampus and plasma of rats resuscitated from CA, evaluating the effect of KP modulation in preventing CA-induced neurological deficit. Methods and Results Early KP activation was first demonstrated in 28 rats subjected to electrically induced CA followed by cardiopulmonary resuscitation. Hippocampal levels of the neuroactive metabolites kynurenine, 3-hydroxy-anthranilic acid, and kynurenic acid were higher 2 hours after CA, as in plasma. Further, 36 rats were randomized to receive the inhibitor of the first step of KP, 1-methyl-DL-tryptophan, or vehicle, before CA. No differences were observed in hemodynamics and myocardial function. The CA-induced KP activation, sustained up to 96 hours in hippocampus (and plasma) of vehicle-treated rats, was counteracted by the inhibitor as indicated by lower hippocampal (and plasmatic) kynurenine/tryptophan ratio and kynurenine levels. 1-Methyl-DL-tryptophan reduced the CA-induced neurological deficits, with a significant correlation between the neurological score and the individual kynurenine levels, as well as the kynurenine/tryptophan ratio, in plasma and hippocampus. Conclusions These data demonstrate the CA-induced lasting activation of the first step of the KP in hippocampus, showing that this activation was involved in the evolving neurological deficit. The degree of peripheral activation of KP may predict neurological function after CA.


Assuntos
Encéfalo , Reanimação Cardiopulmonar , Parada Cardíaca , Cinurenina , Animais , Ratos , Encéfalo/fisiopatologia , Estado Funcional , Parada Cardíaca/terapia , Cinurenina/metabolismo , Resultado do Tratamento , Triptofano/metabolismo
19.
Crit Care ; 25(1): 265, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325723

RESUMO

BACKGROUND: Perioperative cardiac arrest is a rare complication with an incidence of around 1 in 1400 cases, but it carries a high burden of mortality reaching up to 70% at 30 days. Despite its specificities, guidelines for treatment of perioperative cardiac arrest are lacking. Gathering the available literature may improve quality of care and outcome of patients. METHODS: The PERIOPCA Task Force identified major clinical questions about the management of perioperative cardiac arrest and framed them into the therapy population [P], intervention [I], comparator [C], and outcome [O] (PICO) format. Systematic searches of PubMed, Embase, and the Cochrane Library for articles published until September 2020 were performed. Consensus-based treatment recommendations were created using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. The strength of consensus among the Task Force members about the recommendations was assessed through a modified Delphi consensus process. RESULTS: Twenty-two PICO questions were addressed, and the recommendations were validated in two Delphi rounds. A summary of evidence for each outcome is reported and accompanied by an overall assessment of the evidence to guide healthcare providers. CONCLUSIONS: The main limitations of our work lie in the scarcity of good quality evidence on this topic. Still, these recommendations provide a basis for decision making, as well as a guide for future research on perioperative cardiac arrest.


Assuntos
Parada Cardíaca/terapia , Período Perioperatório/tendências , Consenso , Técnica Delphi , Parada Cardíaca/etiologia , Humanos
20.
Am J Respir Crit Care Med ; 204(6): 741-743, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34181870
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...