Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37224371

RESUMO

Centimeter-sized BaTiO3-based crystals grown by top-seeded solution growth from the BaTiO3-CaTiO3-BaZrO3 system were used to process a high-frequency (HF) lead-free linear array. Piezoelectric plates with (110)pc cut within 1° accuracy were used to manufacture two 1-3 piezo-composites with thicknesses of 270 and [Formula: see text] for resonant frequencies in air of 10 and 30 MHz, respectively. The electromechanical characterization of the BCTZ crystal plates and the 10-MHz piezocomposite yielded the thickness coupling factors of 40% and 50%, respectively. We quantified the electromechanical performance of the second piezocomposite (30 MHz) according to the reduction in the pillar sizes during the fabrication process. The dimensions of the piezocomposite at 30 MHz were sufficient for a 128-element array with a 70- [Formula: see text] element pitch and a 1.5-mm elevation aperture. The transducer stack (backing, matching layers, lens, and electrical components) was tuned with the characteristics of the lead-free materials to deliver optimal bandwidth and sensitivity. The probe was connected to a real-time HF 128-channel echographic system for acoustic characterization (electroacoustic response and radiation pattern) and to acquire high-resolution in vivo images of human skin. The center frequency of the experimental probe was 20 MHz, and the fractional bandwidth at -6 dB was 41%. Skin images were compared against those obtained with a lead-based 20-MHz commercial imaging probe. Despite significant differences in sensitivity between elements, in vivo images obtained with a BCTZ-based probe convincingly demonstrated the potential of integrating this piezoelectric material in an imaging probe.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29994202

RESUMO

(K,Na)NbO3-based ferroelectric single crystals have recently undergone a substantial development, resulting in improved crystal quality and large piezoelectric coefficients, exceeding 700 pC/N, over a broad temperature range. However, further development necessitates a detailed understanding of the mechanisms defining the domain structure and its temperature evolution. This paper presents the investigation into the crystallographic structure and domain configurations of a (K,Na,Li)(Ta,Nb)O3 single crystal over a broad temperature range. The crystal was grown by the submerged-seed solution growth technique and investigated using in situ transmission electron microscopy, X-ray diffraction, dielectric measurements, and polarized light microscopy. The lattice distortion, structural phase transitions, and domain configurations are reported. A transition from the lamellar orthorhombic to the rectangular tetragonal domain structure is observed upon heating. Moreover, the milky optical appearance of the crystal was investigated and found to result from the presence of regions with different domain configurations and domain sizes. The formation of these regions is related to the growth defects, which govern the domain formation when cooling below the Curie temperature.

3.
Nanotechnology ; 28(47): 475707, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28961144

RESUMO

A new strategy to elaborate (1-3) type multiferroic nanocomposites with controlled dimensions and vertical alignment is presented. The process involves a supported nanoporous alumina layer as a template for growth of free-standing and vertically aligned CoFe2 nanopillars using a room temperature pulsed electrodeposition process. Ba0.70Sr0.30TiO3-CoFe2O4 multiferroic nanocomposites were grown through direct deposition of Ba0.7Sr0.3TiO3 films by radio-frequency sputtering on the top surface of the pillar structure, with in situ simultaneous oxidation of CoFe2 nanopillars. The vertically aligned multiferroic nanocomposites were characterized using various techniques for their structural and physical properties. The large interfacial area between the ferrimagnetic and ferroelectric phases leads to a magnetoelectric voltage coefficient as large as ∼320 mV cm-1 Oe-1 at room temperature, reaching the highest values reported so far for vertically architectured nanocomposite systems. This simple method has great potential for large-scale synthesis of many other hybrid vertically aligned multiferroic heterostructures.

4.
Inorg Chem ; 54(22): 10623-31, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26502801

RESUMO

Polycrystalline samples of Mn1-xCuxWO4 (x ≤ 0.5) have been prepared by a solid-state synthesis as well as from a citrate synthesis at moderate temperature (850 °C). The goal is to study changes in the structural, magnetic, and dielectric properties of magnetoelectric type-II multiferroic MnWO4 caused by replacing Jahn-Teller-inactive Mn(2+) (d(5), S = 5/2) ions with Jahn-Teller-active Cu(2+) (d(9), S = 1/2) ions. Combination of techniques including scanning electron microscopy, powder X-ray and neutron diffraction, and Raman spectroscopy demonstrates that the polycrystalline samples with low copper content 0 ≤ x ≤ 0.25 are solid solution that forms in the monoclinic P2/c space group. Rietveld analyses indicate that Cu atoms substitutes for Mn atoms at the Mn crystallographic site of the MnWO4 structure and suggest random distributions of Jahn-Teller-distorted CuO6 octahedra in the solid solution. Magnetic susceptibility reveals that only 5% of Cu substitution suppresses the nonpolar collinear AF1 antiferromagnetic structure observed in pure MnWO4. Type-II multiferroicity survives a weak Cu substitution rate (x < 0.15). Multiferroic transition temperature and Néel temperature increase as the amount of Cu increases. New trends in some of the magnetic properties and in dielectric behaviors are observed for x = 0.20 and 0.25. Careful analysis of the magnetic susceptibility reveals that the incorporation of Cu into MnWO4 strengthens the overall antiferromagnetic interaction and reduces the magnetic frustration.

5.
Materials (Basel) ; 8(11): 7962-7978, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28793690

RESUMO

Lead-free piezoelectric materials attract more and more attention owing to the environmental toxicity of lead-containing materials. In this work, we review our first attempts of single crystal grown by the top-seeded solution growth method of BaTiO3 substituted with zirconium and calcium (BCTZ) and (K0.5Na0.5)NbO3 substituted with lithium, tantalum, and antimony (KNLSTN). The growth methodology is optimized in order to reach the best compositions where enhanced properties are expected. Chemical analysis and electrical characterizations are presented for both kinds of crystals. The compositionally-dependent electrical performance is investigated for a better understanding of the relationship between the composition and electrical properties. A cross-over from relaxor to ferroelectric state in BCTZ solid solution is evidenced similar to the one reported in ceramics. In KNLSTN single crystals, we observed a substantial evolution of the orthorhombic-to-tetragonal phase transition under minute composition changes.

6.
Opt Express ; 22(19): 23034-42, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321774

RESUMO

We show experimentally that poly-crystalline TiO2 spheres, 20-30 µm in diameter, exhibit a magnetic dipole Mie resonance in the terahertz (THz) frequency band (1.0-1.6 THz) with a narrow line-width (<40 GHz). We detect and investigate the magnetic dipole and electric dipole resonances in single high-permittivity TiO2 microspheres, using a near-field probe with a sub-wavelength (~λ/50) size aperture and THz time-domain spectroscopy technique. The Mie resonance signatures are observed in the electric field amplitude and phase spectra, as well as in the electric field distribution near the microspheres. The narrow line-width and the sub-wavelength size (λ/10) make the TiO2 microspheres excellent candidates for realizing low-loss THz metamaterials.


Assuntos
Simulação por Computador , Microesferas , Espectroscopia Terahertz/instrumentação , Titânio/química , Desenho de Equipamento , Radiação Terahertz
7.
Opt Lett ; 38(7): 1037-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23546235

RESUMO

Ferroelectric BaTiO3 (BTO) thin films are grown by RF sputtering onto an indium tin oxide bottom electrode on a MgO single-crystal substrate. We have studied here the optical properties by the prism coupling technique. We report the ordinary and extraordinary refractive indices of the films, the film thickness, and the optical losses that are obtained on the planar waveguides: n0=2.224±0.001 and n(e)=2.219±0.001 at 1539 nm. Furthermore, in order to demonstrate the active property of the BTO films, we have investigated the electro-optic (EO) properties by using the change of the resonant coupling angle (variation of fundamental TE0 guided mode) when the transverse electric field is applied. The latter is induced by the refractive index variation (Δn) caused by the EO effect when a static electric field is applied transversely to the film. The EO coefficient obtain is about 18 pm/V for TE mode and 23 pm/V for TM modes at 1539 nm. This value illustrates the suitability of the BTO material thin film with a polycrystalline structure for applications such as modulations, switching, and interconnections.

8.
J Phys Condens Matter ; 24(40): 405901, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22951582

RESUMO

Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it has already been shown that ferroelectric domain walls can be the source of such artificial coupling. We show here that low-temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this loss alteration has no counterpart in the real part of the dielectric permittivity confirms that no interface is involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe-related centers was confirmed by ESR spectroscopy, showing a maximum intensity at ca T ~ 40 K.


Assuntos
Compostos de Bário/química , Ferro/química , Titânio/química , Campos Magnéticos , Teste de Materiais
9.
Artigo em Inglês | MEDLINE | ID: mdl-23007754

RESUMO

We have investigated the dielectric response of Ba(2)Pr(x)Nd(1-x)FeNb(4)O(15) ceramics (x = 0, 0.2, 0.5, 0.6, 0.8, 1) in the frequency range from 20 Hz to 1 GHz. The obtained results confirmed the continuous transformation from the ferroelectric behavior of Ba2NdFeNb4O15 to the pure relaxor response of Ba(2)PrFeNb(4)O(15) with increasing x. For intermediate x values, coexisting ferroelectric transition and relaxor dielectric signatures were observed, corresponding to two different phenomena in the framework of these materials. Increasing the amount of Pr decreases the ferroelectric phase transition temperatures in these ceramics; a large cooling¿heating hysteresis exceeding 50K was also observed.

10.
J Phys Condens Matter ; 21(7): 075902, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21817344

RESUMO

The thermal expansion properties of the ceramic compositions Ba(1-y)La(y)Ti(1-y/4)O(3) (y = 0.0, 0.026, 0.036, 0.054) and Ba(1-y)Bi(2y/3)Ti(1-x)Zr(x)O(3) (y = 0.10; x = 0.0, 0.04, 0.05, 0.10, 0.15) were determined in the temperature range 120-700 K. We report the temperature-dependent measurements of the strain, thermal expansion coefficient and the magnitude of root mean square polarization. The results obtained are discussed together with the data on the structure and dielectric properties.

11.
J Phys Condens Matter ; 21(45): 452201, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21694001

RESUMO

Relaxors are very interesting materials but most of the time they are restricted to perovskite materials and thus their flexibility is limited. We have previously shown that tetragonal tungsten bronze (TTB) niobate Ba(2)PrFeNb(4)O(15) was a relaxor below 170 K and that Ba(2)NdFeNb(4)O(15) displays a ferroelectric behavior with a T(C) = 323 K. On scanning the whole solid solution Ba(2)Pr(x)Nd(1-x)FeNb(4)O(15) (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1), we demonstrate here a continuous crossover between these end member behaviors with a coexistence of ferroelectricity and relaxor in the intermediate range. This tunability is ascribed to the peculiar structure of the TTB networks which is more open than the classical perovskites. This allows for the coexistence of long range and short range orders and thus opens up the range of relaxor materials.

12.
J Nanosci Nanotechnol ; 5(6): 980-3, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16060164

RESUMO

This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.


Assuntos
Óxido de Alumínio/química , Compostos de Bário/química , Cromatografia com Fluido Supercrítico/métodos , Compostos Férricos/química , Magnetismo , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Titânio/química , Adsorção , Óxido de Alumínio/análise , Compostos de Bário/análise , Cerâmica/análise , Cerâmica/química , Cristalização/métodos , Compostos Férricos/análise , Teste de Materiais , Nanotubos/análise , Tamanho da Partícula , Titânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...