Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Biol (Paris) ; 49(8): 649-54, 2001 Oct.
Artigo em Francês | MEDLINE | ID: mdl-11692753

RESUMO

In most tumor cells a chromosomal instability leads to an abnormal chromosome number (aneuploidy). The mitotic checkpoint is essential for ensuring accurate chromosome segregation by allowing mitotic delay in response to a spindle defect. This checkpoint delays the onset of anaphase until all the chromosomes are correctly aligned on the mitotic spindle. When unattached kinetochores are present, the metaphase/anaphase transition is not allowed and the time available for chromosome-microtubule capture increases. Genes required for this delay were first identified in Saccharomyces cerevisiae (the MAD, BUB and MPS1 genes) and subsequently, homologs have been identified in higher eucaryotes showing that the spindle checkpoint pathway is highly conserved. The checkpoint functions by preventing an ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC) from ubiquitinylating proteins whose destruction is required for anaphase onset.


Assuntos
Divisão Celular , Cromossomos/fisiologia , Aneuploidia , Animais , Segregação de Cromossomos , Humanos , Cinetocoros , Mitose , Neoplasias/genética , Saccharomyces cerevisiae/genética , Fuso Acromático
2.
Mol Biol Cell ; 12(9): 2660-71, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11553706

RESUMO

The c-Mos proto-oncogene product plays an essential role during meiotic divisions in vertebrate eggs. In Xenopus, it is required for progression of oocyte maturation and meiotic arrest of unfertilized eggs. Its degradation after fertilization is essential to early embryogenesis. In this study we investigated the mechanisms involved in c-Mos degradation. We present in vivo evidence for ubiquitin-dependent degradation of c-Mos in activated eggs. We found that c-Mos degradation is not directly dependent on the anaphase-promoting factor activator Fizzy/cdc20 but requires cyclin degradation. We demonstrate that cyclin B/cdc2 controls in vivo c-Mos phosphorylation and stabilization. Moreover, we show that cyclin B/cdc2 is capable of directly phosphorylating c-Mos in vitro, inducing a similar mobility shift to the one observed in vivo. Tryptic phosphopeptide analysis revealed a practically identical in vivo and in vitro phosphopeptide map and allowed identification of serine-3 as the largely preferential phosphorylation site as previously described (Freeman et al., 1992). Altogether, these results demonstrate that, in vivo, stability of c-Mos is directly regulated by cyclin B/cdc2 kinase activity.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Oócitos/metabolismo , Proteínas Proto-Oncogênicas c-mos/metabolismo , Xenopus/metabolismo , Animais , Western Blotting , Estabilidade Enzimática , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Mapeamento de Peptídeos , Fosforilação , Testes de Precipitina , Proteínas Recombinantes/metabolismo , Ubiquitina/metabolismo , Proteínas de Xenopus/metabolismo
3.
Cell ; 106(1): 83-93, 2001 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-11461704

RESUMO

The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Cinetocoros/metabolismo , Mitose/fisiologia , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Núcleo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Feminino , Proteínas Fúngicas/metabolismo , Humanos , Proteínas Mad2 , Masculino , Meiose , Metáfase , Mitose/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Nocodazol/farmacologia , Proteínas Nucleares , Oócitos/citologia , Oócitos/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes/metabolismo , Reticulócitos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Espermatozoides/fisiologia , Ubiquitinas/metabolismo , Vertebrados , Proteínas de Xenopus/genética , Xenopus laevis
4.
Nat Cell Biol ; 3(1): 83-7, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11146630

RESUMO

Here we show that segregation of homologous chromosomes and that of sister chromatids are differentially regulated in Xenopus and possibly in other higher eukaryotes. Upon hormonal stimulation, Xenopus oocytes microinjected with antibodies against the anaphase-promoting complex (APC) activator Fizzy or the APC core subunit Cdc27, or with the checkpoint protein Mad2, a destruction-box peptide or methylated ubiquitin, readily progress through the first meiotic cell cycle and arrest at second meiotic metaphase. However, they fail to segregate sister chromatids and remain arrested at second meiotic metaphase when electrically stimulated or when treated with ionophore A34187, two treatments that mimic fertilization and readily induce chromatid segregation in control oocytes. Thus, APC is required for second meiotic anaphase but not for first meiotic anaphase.


Assuntos
Anáfase/fisiologia , Proteínas de Transporte , Ligases/fisiologia , Meiose/fisiologia , Oócitos/crescimento & desenvolvimento , Complexos Ubiquitina-Proteína Ligase , Proteínas de Xenopus , Xenopus/embriologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Anticorpos/farmacologia , Calcimicina/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/farmacologia , Proteínas Cdc20 , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Feminino , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacologia , Ionóforos/farmacologia , Microinjeções , Proteínas Nucleares , Oócitos/citologia , Oócitos/metabolismo , Progesterona/farmacologia , Ubiquitina-Proteína Ligases , Xenopus/genética , Xenopus/metabolismo
5.
Biochem Biophys Res Commun ; 276(2): 515-23, 2000 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-11027506

RESUMO

During oogenesis, maternal mRNAs are synthesised and stored in a translationally dormant form due to the presence of regulatory elements at the 3' untranslated regions (3'UTR). In Xenopus oocytes, several studies have described the presence of RNA-binding proteins capable to repress maternal-mRNA translation. The testis-brain RNA-binding protein (TB-RBP/Translin) is a single-stranded DNA- and RNA-binding protein which can bind the 3' UTR regions (Y and H elements) of stored mRNAs and can suppress in vitro translation of the mRNAs that contain these sequences. Here we report the cloning of the Xenopus homologue of the TB-RBP/Translin protein (X-translin) as well as its expression, its localisation, and its biochemical association with the protein named Translin associated factor X (Trax) in Xenopus oocytes. The fact that this protein is highly present in the cytoplasm from stage VI oocytes until 48 h embryos and that it has been described as capable to inhibit paternal mRNA translation, indicates that it could play an important role in maternal mRNA translation control during Xenopus oogenesis and embryogenesis. Moreover, we investigated X-translin localisation during cell cycle in XTC cells. In interphase, although a weak and diffuse nuclear staining was observed, X-translin was mostly present in the cytoplasm where it exhibited a prominent granular staining. Interestingly, part of X-translin underwent a remarkable redistribution throughout mitosis and associated with centrosomes, which may suggest a new unknown role for this protein in cell cycle.


Assuntos
Centrossomo/metabolismo , Proteínas de Ligação a DNA/genética , Mitose/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Sequência Consenso , DNA Complementar/análise , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus laevis/embriologia
6.
J Biol Chem ; 275(13): 9797-804, 2000 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-10734134

RESUMO

The retinoblastoma susceptibility gene product, the Rb protein, is a key regulator of mammalian cell proliferation. One of the major targets of Rb is the S phase inducing E2F transcription factor. Once bound to E2F, Rb represses the expression of E2F-regulated genes. Transcriptional repression by Rb is believed to be crucial for the proper control of cell growth. Recently, we and others showed that Rb represses transcription through the recruitment of a histone deacetylase. Interestingly, we show here that the Rb-associated histone deacetylase complex could deacetylate polynucleosomal substrates, indicating that other proteins could be present within this complex. The Rb-associated protein RbAp48 belongs to many histone deacetylase complexes. We show here that the histone deacetylase HDAC1 is able to mediate the formation of a ternary complex containing Rb and RbAp48. Moreover, less deacetylase activity was found associated with Rb in cell extracts depleted for RbAp48 containing complexes, demonstrating that Rb, histone deacetylase, and RbAp48 are physically associated in live cells. Taken together, these data indicate that RbAp48 is a component of the histone deacetylase complex recruited by Rb. Finally, we found that E2F1 and RbAp48 are physically associated in the presence of Rb and HDAC1, suggesting that RbAp48 could be involved in transcriptional repression of E2F-responsive genes.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Proteína do Retinoblastoma/metabolismo , Retinoblastoma/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fase G1 , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteína 1 de Ligação ao Retinoblastoma , Proteína 4 de Ligação ao Retinoblastoma , Fator de Transcrição DP1 , Fatores de Transcrição/metabolismo
7.
Prog Cell Cycle Res ; 4: 41-7, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10740813

RESUMO

The critical steps of the cell cycle are generally controlled through the transcriptional regulation of specific subsets of genes. Transcriptional regulation has been recently linked to acetylation or deacetylation of core histone tails: acetylated histone tails are generally associated with active chromatin, whereas deacetylated histone tails are associated with silent parts of the genome. A number of transcriptional co-regulators are histone acetyl-transferases or histone deacetylases. Here, we discuss some of the critical cell cycle steps in which these enzymes are involved.


Assuntos
Ciclo Celular/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetilação , Acetiltransferases/metabolismo , Animais , Histona Acetiltransferases , Histona Desacetilases/metabolismo , Transcrição Gênica
8.
Gene Expr ; 8(1): 33-42, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-10543729

RESUMO

The serum response element (SRE) in the c-fos promoter contains an ets box whose integrity is required for full activation of this proto-oncogene by nerve growth factor (NGF) in PC12 rat pheochromocytoma cells. Electrophoretic mobility shift assays (EMSA) detect a protein in nuclear extracts that binds to the wild-type SRE, but not to an SRE containing a mutated ets box. Competition studies using unlabeled probes, and supershift experiments using antibodies and in vitro translated core serum response factor (SRF) indicate that the protein in question is not YY1, SAP-1, nor Elk-1 and that it does not exhibit ternary complex factor (TCF) activity, so that it may correspond to an autonomously binding Ets family protein. The complete disappearance of this "Ets-like autonomous binding factor" upon terminal differentiation of both L6alpha2 myoblastic and PC12 pheochromocytoma cells points to a possible role in the proliferation/differentiation process.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Elementos de Resposta , Células 3T3 , Animais , Diferenciação Celular , Divisão Celular , Regulação para Baixo , Camundongos , Fator de Crescimento Neural/metabolismo , Células PC12 , Ligação Proteica , Ratos , Fator de Resposta Sérica , Células Tumorais Cultivadas
9.
Semin Cell Dev Biol ; 10(2): 197-203, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10441073

RESUMO

Cell fate is determined by extracellular signals which are transmitted to the nucleus and result in the transcriptional regulation of specific subsets of genes. Transcriptional regulation has been recently linked to enzymatic activities which are able to acetylate or deacetylate core histone tails. A number of transcriptional co-regulators are histone acetyl-transferases or histone deacetylases. Here, we discuss the involvement of these enzymes in critical steps of cell proliferation or cell differentiation control


Assuntos
Acetiltransferases/fisiologia , Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/fisiologia , Substâncias de Crescimento/fisiologia , Histona Desacetilases/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais/fisiologia , Acetilação , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Transformação Celular Neoplásica , Cromatina/metabolismo , Fatores de Transcrição E2F , Regulação da Expressão Gênica/efeitos dos fármacos , Substâncias de Crescimento/farmacologia , Histona Acetiltransferases , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores do Ácido Retinoico/fisiologia , Proteína do Retinoblastoma/fisiologia , Proteína 1 de Ligação ao Retinoblastoma , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição DP1 , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Tretinoína/farmacologia
10.
Nature ; 396(6707): 184-6, 1998 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-9823900

RESUMO

Transforming viral proteins such as E1A force cells through the restriction point of the cell cycle into S phase by forming complexes with two cellular proteins: the retinoblastoma protein (Rb), a transcriptional co-repressor, and CBP/p300, a transcriptional co-activator. These two proteins locally influence chromatin structure: Rb recruits a histone deacetylase, whereas CBP is a histone acetyltransferase. Progression through the restriction point is triggered by phosphorylation of Rb, leading to disruption of Rb-associated repressive complexes and allowing the activation of S-phase genes. Here we show that CBP, like Rb, is controlled by phosphorylation at the G1/S boundary, increasing its histone acetyltransferase activity. This enzymatic activation is mimicked by E1A.


Assuntos
Acetiltransferases/metabolismo , Proteínas E1A de Adenovirus/metabolismo , Quinases relacionadas a CDC2 e CDC28 , Ciclo Celular , Ciclina E/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Células 3T3 , Animais , Proteína de Ligação a CREB , Quinase 2 Dependente de Ciclina , Ativação Enzimática , Fase G1 , Histona Acetiltransferases , Camundongos , Fosforilação , Fase S , Ativação Transcricional , Transfecção
11.
Bull Cancer ; 85(7): 606-7, 1998 Jul.
Artigo em Francês | MEDLINE | ID: mdl-9752266

RESUMO

The balance between cellular proliferation and differentiation is strictly controlled in the cell and the deregulation of this balance can lead to tumour formation. The tumour suppressor protein Rb plays a key role in this balance essentially by repressing progression through the cell cycle and thereby it blocks the cell in G1 phase. Rb represses S phase genes through the recruitment of an enzyme which modifies DNA structure, the histone deacetylase HDAC1. The Rb/HDAC1 complex is a key element in the control of cell proliferation and differentiation. Moreover, this complex is likely to be a target for transforming viral proteins.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA , Histona Desacetilases/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/fisiologia , Proteínas E1A de Adenovirus/fisiologia , Fatores de Transcrição E2F , Histona Desacetilase 1 , Humanos , Proteínas Oncogênicas Virais/fisiologia , Papillomaviridae , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteína 1 de Ligação ao Retinoblastoma , Fase S/fisiologia , Fator de Transcrição DP1 , Fatores de Transcrição/metabolismo
12.
Proc Natl Acad Sci U S A ; 95(18): 10493-8, 1998 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9724731

RESUMO

The transcription factor E2F plays a major role in cell cycle control in mammalian cells. E2F binding sites, which are present in the promoters of a variety of genes required for S phase, shift from a negative to a positive role in transcription at the commitment point, a crucial point in G1 that precedes the G1/S transition. Before the commitment point, E2F activity is repressed by members of the pocket proteins family. This repression is believed to be crucial for the proper control of cell growth. We have previously shown that Rb, the founding member of the pocket proteins family, represses E2F1 activity by recruiting the histone deacetylase HDAC1. Here, we show that the two other members of the pocket proteins family, p107 and p130, also are able to interact physically with HDAC1 in live cells. HDAC1 interacts with p107 and Rb through an "LXCXE"-like motif, similar to that used by viral transforming proteins to bind and inactivate pocket proteins. Indeed, we find that the viral transforming protein E1A competes with HDAC1 for p107 interaction. We also demonstrate that p107 is able to interact simultaneously with HDAC1 and E2F4, suggesting a model in which p107 recruits HDAC1 to repress E2F sites. Indeed, we demonstrate that histone deacetylase activity is involved in the p107- or p130-induced repression of E2F4. Taken together, our data suggest that all members of the E2F family are regulated in early G1 by similar complexes, containing a pocket protein and the histone deacetylase HDAC1.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/metabolismo , Histona Desacetilases/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas , Fatores de Transcrição/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Fator de Transcrição E2F4 , Humanos , Células Jurkat , Fosforilação , Ligação Proteica , Proteína 1 de Ligação ao Retinoblastoma , Proteína p107 Retinoblastoma-Like , Proteína p130 Retinoblastoma-Like , Fator de Transcrição DP1 , Transcrição Gênica
13.
Nature ; 391(6667): 601-5, 1998 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-9468140

RESUMO

The retinoblastoma tumour-suppressor protein Rb inhibits cell proliferation by repressing a subset of genes that are controlled by the E2F family of transcription factors and which are involved in progression from the G1 to the S phase of the cell cycle. Rb, which is recruited to target promoters by E2F1, represses transcription by masking the E2F1 transactivation domain and by inhibiting surrounding enhancer elements, an active repression that could be crucial for the proper control of progression through the cell cycle. Some transcriptional regulators act by acetylating or deacetylating the tails protruding from the core histones, thereby modulating the local structure of chromatin: for example, some transcriptional repressors function through the recruitment of histone deacetylases. We show here that the histone deacetylase HDAC1 physically interacts and cooperates with Rb. In HDAC1, the sequence involved is an LXCXE motif, similar to that used by viral transforming proteins to contact Rb. Our results strongly suggest that the Rb/HDAC1 complex is a key element in the control of cell proliferation and differentiation and that it is a likely target for transforming viruses.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Proteína do Retinoblastoma/fisiologia , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Inibidores Enzimáticos/farmacologia , Histona Desacetilase 1 , Inibidores de Histona Desacetilases , Humanos , Ácidos Hidroxâmicos/farmacologia , Células Jurkat , Luciferases/genética , Dados de Sequência Molecular , Ligação Proteica , Proteína 1 de Ligação ao Retinoblastoma , Fator de Transcrição DP1 , Fatores de Transcrição/metabolismo , Transfecção
14.
Oncogene ; 15(14): 1661-9, 1997 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-9349499

RESUMO

TCFs, which are members of the Ets family of transcription factors, are recruited to the Serum Response Element (SRE) in the c-fos promoter by SRF. These Ets proteins, which are substrates for the MAP kinases, are direct targets of the Ras/MAP kinase signal transduction pathway. In this paper, we demonstrate that one of the TCFs, SAP-1a, displays a significant level of autonomous binding to the SRE Ets box. In contrast to previous observations, deletion of the SRF binding domain did not modulate the autonomous binding of SAP-1a. Also, the autonomous binding was not modulated by the phosphorylation of SAP-1a by MAP kinases. The autonomous binding was also detected in live cells: transfected SAP-1a was able to restore the response of a CArG-less SRE in PC12 cells. The response occurred in the absence of SRF recruitment since a mutant of SAP-1a in which the B-box, a domain required for interaction with SRF, had been deleted was still able to transactivate the CArG-less SRE. The transactivation was repressed by a Ras transdominant negative mutant, indicating the involvement of the Ras/MAP kinase pathway. Taken together, these data demonstrate that SAP-1a is capable of binding to the c-fos SRE in the absence of SRF.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes fos , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Nucleares/metabolismo , Células PC12 , Fosforilação , Ratos , Proteínas Recombinantes , Sequências Reguladoras de Ácido Nucleico , Fator de Resposta Sérica , Transfecção , Proteínas Elk-4 do Domínio ets
15.
FEBS Lett ; 391(3): 247-51, 1996 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-8764983

RESUMO

We have analysed the expression of the genes encoding transcription factors involved in c-fos transcriptional regulation, i.e. the serum response factor (SRF) and the ETS-related proteins ELK-1 and SAP-1, in a variety of human cell lines. RNA was determined by Northern blot analysis, and proteins were detected on Western blots: the two analyses gave essentially identical results. SRF was expressed at similar levels in all cell lines tested. In contrast, SAP-1 and ELK-1 expression varied from one cell line to another. Interestingly, in any given cell line, high levels of one protein were accompained by low levels of the other. Similar results were obtained by electro-mobility shift assays (EMSA), using antibodies directed against the proteins. Thus, our data raise the possibility of a coordinated regulation of the expression of these two Ets genes, at both RNA and protein levels.


Assuntos
Proteínas de Ligação a DNA/análise , Proteínas Nucleares/análise , Proteínas Proto-Oncogênicas/análise , Fatores de Transcrição/análise , Sequência de Bases , Northern Blotting , Western Blotting , Linhagem Celular , DNA Complementar/análise , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/análise , Mapeamento por Restrição , Fator de Resposta Sérica , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas Elk-1 do Domínio ets , Proteínas Elk-4 do Domínio ets
16.
Nucleic Acids Res ; 24(6): 1052-8, 1996 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-8604338

RESUMO

EWS-FLI-1 is a chimeric protein produced in most Ewing's sarcomas. It results from the fusion of the N-terminal-encoding region of the EWS gene to the C-terminal DNA-binding domain (the ETS domain) encoded by the FLI-1 ets family gene. Both EWS-FLI-1 and FLI-1 proteins function as transcription factors that bind specifically to ets sequences (the ets boxes) present in promoter elements. EWS- FLI-1 is a powerful transforming protein, whereas FLI-1 is not. In a search for potential DNA binding sites for these two proteins, we have tested their ability to recognize the serum responsive element (SRE) in the c-fos promoter. This cis element contains an ets box which can be occupied by members of the ETS protein family which do not bind DNA autonomously but form a ternary complex with a second protein, p67SRF (serum responsive factor). We demonstrate here that EWS-FLI-1, but not FLI-1, is able to form a ternary complex on the c-fos SRE. Using a GST pull-down assay, we show that both FLI-1 and EWS-FLI-1 interact in vitro with SRF in the absence of DNA. In electromobility shift assays, EWS-FLI-1 binding to the SRE is detectable in the absence of SRF whereas the binding of FLI-1 is not, suggesting that the interaction with DNA is the step which limits ternary complex formation by FLI-1. Deletion of the N-terminal portion of FLI-1 resulted in a protein which behaved as EWS-FLI-1, suggesting the existence of an N- terminal inhibitory domain in the normal protein. Taken together, our data indicate that there are intrinsic differences in the binding of EWS-FLI-1 and FLI-1 proteins to distinct ets sequences.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas/metabolismo , Transativadores/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Primers do DNA/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Genes fos , Ribonucleoproteínas Nucleares Heterogêneas , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Proto-Oncogênica c-fli-1 , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Proteína EWS de Ligação a RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transativadores/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...