Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(5): 7221-7236, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225955

RESUMO

Low density charge mobility from below bandgap, two-photon photoexcitation of bulk silicon (Si) is interrogated using time-resolved terahertz spectroscopy (TRTS). Total charge mobility is measured as a function of excitation frequency and fluence (charge carrier density), cut angle, and innate doping levels. Frequency dependent complex photoconductivities are extracted using the Drude model to obtain average and DC-limit mobility and carrier scattering times. These dynamic parameters are compared to values from contact-based Hall, above bandgap photoexcitation, and comparable gallium arsenide (GaAs) measurements. Mobilities are shown to increase beyond Hall values at low carrier densities and are modestly higher with increasing dopant density. The former occurs in part from below bandgap photoexcitation exhibiting abnormally small (faster) scattering times, while both reflect unique conduction characteristics at lowest (> 2x1012 cm-3) carrier densities achieved through photodoping.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38680539

RESUMO

Room temperature Time-Domain Terahertz (TDS) and Time-Resolved Terahertz (TRTS) spectroscopic methods are employed to measure carrier mobility and charge generation efficiency in thin-film semiconductor polymers. Interrogation of the dependence on excitation and probe polarizations yields insight into the underlying material properties that guide charge transport. We apply THz polarization anisotropy probes to analyze charge conduction in preparations of the copolymer PCDTPT, consisting of alternating cyclopenta-dithiophene (donor) and thiadiazolo-pyridine (acceptor) units. Comparisons are made among films of different ordering and morphology, including aligned films prepared by blade coating, a near isotropic dropcast film, and isotropic liquid dispersion. They are further contrasted with their population dynamics ascertained through transient absorption and the traditional photoconductive polymer poly-3-hexylthiophene (P3HT). Polarization anisotropy is observed as preferential charge conduction along the backbone propagation direction of PCDTPT, with various factors disproportionately influencing directional mobility and charge pair yield. PCDTPT exhibits unexpectedly strong conductivity when isolated in toluene dispersion. Quantitative comparisons yield a better understanding of polaron/free-charge relaxation and transfer mechanisms and illustrate dynamics among photoexcited charge carriers and their motion and diffusion through different material morphologies.

3.
J Phys Chem B ; 120(22): 5093-102, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27167593

RESUMO

Transient hole-burning and resonantly enhanced Raman spectroscopies are used to probe heterogeneities among localized singlet excitons of poly(3-hexylthiophene) in solution. Transient hole-burning spectroscopy facilitated by population dumping through wavelength-selective stimulated emission exposes inhomogeneous broadening of the exciton absorption band in the near-infrared, as reflected by correlations between stimulated emission and excited-state absorption transition energies. Dump-induced spectral diffusion of the exciton absorption band reflects structural fluctuations in the locally excited polymer. This diffusion is observed to occur slightly faster or slower than the nonequilibrium relaxation that follows direct excitation of the polymer (8-9 ps), with the time scale for diffusion varying with subpopulation: dumping across small vs large band gaps results in diffusion over 5 vs 35 ps, respectively. Furthermore, incomplete spectral relaxation of transient holes reflects that subsets of locally excited structural motifs prepared through photoexcitation cannot interchange through structural fluctuations that occur over the singlet-exciton lifetime. Raman spectra of the C═C/C-C stretching region collected in resonance at energies across the exciton absorption band exhibit frequency and intensity trends (Raman "dispersion") ascribed to variation in the local effective conjugation length. Together, results explicitly reveal heterogeneities among excitonic states associated with variations and fluctuations in local conformational order.

4.
J Am Chem Soc ; 138(10): 3362-70, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26900714

RESUMO

We report the synthesis, self-assembly, and electron transfer capabilities of peptide-based electron donor-acceptor molecules and supramolecular nanostructures. These modified peptides contain π-conjugated oligothiophene electron donor cores that are peripherally substituted with naphthalene diimide electron acceptors installed via imidation of site-specific lysine residues. These molecules self-assemble into one-dimensional nanostructures in aqueous media, as shown through steady-state absorption, photoluminescence, and circular dichroism spectra, as well as transmission electron microscopy. Excitation of the oligothiophene donor moieties results in electron transfer to the acceptor units, ultimately creating polar, charge-separated states that persist for over a nanosecond as observed with transient absorption spectroscopy. This study demonstrates how transient electric fields can be engineered into aqueous nanomaterials of biomedical relevance through external, temporally controlled photonic inputs.


Assuntos
Nanoestruturas/química , Peptídeos/química , Dicroísmo Circular , Elétrons , Concentração de Íons de Hidrogênio , Imidas/química , Medições Luminescentes , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Naftalenos/química , Processos Fotoquímicos , Espectrofotometria Ultravioleta , Tiofenos/química , Água/química
5.
J Phys Chem Lett ; 6(3): 438-45, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26261961

RESUMO

The ultrafast formation of bound charge pairs, or polaron pairs (PPs), in mixed-order aggregates of poly(3-hexylthiophene) was investigated using femtosecond stimulated Raman spectroscopy (FSRS). Spectral dynamics in the carbon-carbon stretching region reveal a significant photoinduced depletion in steady-state features associated with lamellar-stacked, ordered polymer regions upon 500 nm photoexcitation; this is followed by the appearance of red-shifted features attributable to PPs that is delayed by a few hundred femtoseconds. PP features decay with concomitant recovery of the steady-state Raman depletion over a few picoseconds. The vibrational spectrum of the PP obtained exhibits a modest red shift (<15 cm(-1)) and lower Raman activity relative to steady-state features in the C═C stretching region but similar features in other regions. In total, this work demonstrates the potential of time-resolved Raman as a morphologically selective and structurally sensitive probe for tracking ultrafast charge separation and recombination dynamics within polymer regions of conjugated materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...