Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(2): 2249-2260, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35048688

RESUMO

Mitochondria and chloroplasts not only are cellular energy sources but also have important regulatory and developmental roles in cell function. CeO2, FeOx ENMs, ZnS, CdS QDs, and relative metal salts were utilized in Murashige-Skoog (MS) synthetic growth medium at different concentrations (80-500 mg L-1) and times of exposures (0-20 days). Analysis of physiological and molecular response of A. thaliana chloroplasts and mitochondrion demonstrates that ENMs increase or decrease functionality and organelle genome replication. Exposure to nanoscale CeO2 and FeOx causes an 81-105% increase in biomass, whereas ZnS and CdS QDs yielded neutral or a 59% decrease in growth, respectively. Differential effects between ENMs and their corresponding metal salts highlight nanoscale-specific response pathways, which include energy production and oxidative stress response. Differences may be ascribed to ENM and the metal salt dissolution rate and the toxicity of the metal ion, which suggests eventual biotransformation processes occurring within the plant. With regard to specific effects on plastid (pt) and mitochondrial (mt) DNA, CdS QD exposure triggered potential variations at the substoichiometric level in the two organellar genomes, while nanoscale FeOx and ZnS QDs caused a 1- to 3-fold increase in ptDNA and mtDNA copy numbers. Nanoparticle CeO2 exposure did not affect ptDNA and mtDNA stoichiometry. These findings suggest that modification in stoichiometry is a potential morpho-functional adaptive response to ENM exposure, triggered by modifications of bioenergetic redox balance, which leads to reducing the photosynthesis or cellular respiration rate.


Assuntos
Arabidopsis , Nanoestruturas , Arabidopsis/genética , Cloroplastos/metabolismo , Mitocôndrias/genética , Nanoestruturas/toxicidade , Plastídeos/genética , Plastídeos/metabolismo
2.
PLoS One ; 12(8): e0184052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28859142

RESUMO

Environmental stochasticity and climate affect outcomes in evolutionary games, which can thereby affect biological diversity. Our maximum likelihood (ML) estimates of replicator dynamics for morph frequency data from control (25 years) and three experimentally perturbed populations (14 years) of side-blotched lizards yield a 3 × 3 payoff matrix in the generalized Rock-Paper-Scissors family; it has intransitive best replies, and each strategy is its own worst reply. ML estimates indicate significant interactive effects of density and temperature on morph frequency. Implied dynamics feature a powerful interior attractor and recover (for the first time) observed 4-5 year oscillations. Our evolutionary experiment on morph frequency confirms that oscillations are driven by frequency dependent selection, but climate entrains the cycles across the perturbed and control populations within 10 generations. Applying the model across the species range, we find that climate also accounts for morph fixation and mating system diversity, suggesting climate may similarly impact ecosystem diversity.


Assuntos
Evolução Biológica , Teoria dos Jogos , Modelos Genéticos , Animais , Clima , Ecossistema , Funções Verossimilhança , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...