Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(28): e2108855, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35246886

RESUMO

Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.

2.
ACS Appl Bio Mater ; 2(1): 104-117, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31061987

RESUMO

The topography of electrospun fiber scaffolds modifies astrocytes toward in vivo-like morphologies and behaviors. However, little is known about how electrospun fiber diameter influences astrocyte behavior. In this work, aligned fibers with two distinct nanoscale fiber diameters (808 and 386 nm) were prepared, and the astrocyte response was measured over time. Astrocytes on the large diameter fibers showed significantly increased elongation as early as 2 h after seeding and remained significantly more elongated for up to 4 days compared to those on small diameter fibers. Astrocytes extending along larger diameter fibers were better equipped to support long neurite outgrowth from dorsal root ganglia neurons, and neurite outgrowth along these astrocytes was less branched than outgrowth along astrocytes cultured on small diameter fibers. The differences in astrocyte shape observed on the small or large diameter fibers did not translate into differences in GLT-1, GFAP, or GLAST protein expression. Thus, different fiber diameters were unable to influence astrocyte protein expression uniquely. Nevertheless, astrocytes cultured in either small or large fibers significantly increased their expression of GLT-1 compared to astrocytes cultured on nonfiber (film) controls. Fibrous-induced increases in astrocyte GLT-1 expression protected astrocyte/neuron cocultures from toxicity generated by high extracellular glutamate. Alternatively, astrocytes/neurons cultured on films were less able to protect these cells from culture conditions consisting of high glutamate levels. Biomaterials, such as the fibrous materials presented here, may help stimulate astrocytes to increase GLT-1 expression and uptake more glutamate, since astrocytes are less likely to uptake glutamate in neurodegenerative pathologies or following central nervous system injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...