Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1767: 147524, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015358

RESUMO

A wide range of microorganisms can infect the central nervous system (CNS). The immune response of the CNS provides limited protection against microbes penetrating the blood-brain barrier. This results in a neurological deficit and sometimes leads to high morbidity and mortality rates despite advanced therapies. For the last two decades, different studies have expanded our understanding of the molecular basis of human neuroinfectious diseases, especially concerning the contributions of mast cell interactions with other central nervous system compartments. Brain mast cells are multifunctional cells derived from the bone marrow and reside in the brain. Their proximity to blood vessels, their role as "first responders" their unique receptors systems and their ability to rapidly release pathogen responsive mediators enable them to exert a crucial defensive role in the host-defense system. This review describes key biological and physiological functions of mast cells, concerning their ability to recognize pathogens via various receptor systems, followed by a coordinated and selective mediator release upon specific interactions with pathogenic stimulating factors. The goal of this review is to direct attention to the possibilities for therapeutic applications of mast cells against bacterial and viral related infections. We also focus on opportunities for future research activating mast cells via adjuvants.


Assuntos
Imunidade/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/patologia , Animais , Infecções Bacterianas/patologia , Encéfalo/citologia , Encéfalo/metabolismo , Comunicação Celular , Sistema Nervoso Central/patologia , Humanos , Inflamação/patologia , Mastócitos/fisiologia , Viroses/patologia
2.
Int J Nanomedicine ; 12: 317-325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28115849

RESUMO

BACKGROUND: Encapsidation, the process during which the genomic RNA of HIV is packaged into viral particles, is an attractive target for antiviral therapy. This study explores a novel nanotechnology-based strategy to inhibit HIV encapsidation by an RNA decoy mechanism. The design of the 16-mer oligoribonucleotide (RNA) decoy is based on the sequence of stem loop 3 (SL3) of the HIV packaging signal (Ψ). Recognition of the packaging signal is essential to the encapsidation process. It is theorized that the decoy RNA, by mimicking the packaging signal, will disrupt HIV packaging if efficiently delivered into lymphocytes by complexation with a carbosilane dendrimer. The aim of the study is to measure the uptake, toxicity, and antiviral activity of the dendrimer-RNA nanocomplex. MATERIALS AND METHODS: A dendriplex was formed between cationic carbosilane dendrimers and the RNA decoy. Uptake of the fluorescein-labeled RNA into MT4 lymphocytes was determined by flow cytometry and confocal microscopy. The cytoprotective effect (50% effective concentration [EC50]) and the effect on HIV replication were determined in vitro by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and viral load measurements, respectively. RESULTS: Flow cytometry and confocal imaging demonstrated efficient transfection of lymphocytes. The dendriplex containing the Ψ decoy showed some activity (EC50 =3.20 µM, selectivity index =8.4). However, there was no significant suppression of HIV viral load. CONCLUSION: Oligoribonucleotide decoys containing SL3 of the packaging sequence are efficiently delivered into lymphocytes by carbosilane dendrimers where they exhibit a modest cytoprotective effect against HIV infection.


Assuntos
Fármacos Anti-HIV/farmacologia , Dendrímeros/farmacologia , HIV-1/efeitos dos fármacos , Nanopartículas/química , Oligorribonucleotídeos/farmacologia , Morte Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dendrímeros/química , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Silanos/química , Transfecção , Carga Viral/efeitos dos fármacos , Montagem de Vírus/efeitos dos fármacos
3.
J Biomed Sci ; 22: 15, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25889635

RESUMO

BACKGROUND: Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 µM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides. RESULTS: The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 µM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 µM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered. CONCLUSIONS: A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data.


Assuntos
Aminocaproatos/farmacologia , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Lactamas/farmacologia , Lactonas/farmacologia , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...