Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(11): 3844-3858, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31180605

RESUMO

Species distribution models (SDMs) that rely on regional-scale environmental variables will play a key role in forecasting species occurrence in the face of climate change. However, in the Anthropocene, a number of local-scale anthropogenic variables, including wildfire history, land-use change, invasive species, and ecological restoration practices can override regional-scale variables to drive patterns of species distribution. Incorporating these human-induced factors into SDMs remains a major research challenge, in part because spatial variability in these factors occurs at fine scales, rendering prediction over regional extents problematic. Here, we used big sagebrush (Artemisia tridentata Nutt.) as a model species to explore whether including human-induced factors improves the fit of the SDM. We applied a Bayesian hurdle spatial approach using 21,753 data points of field-sampled vegetation obtained from the LANDFIRE program to model sagebrush occurrence and cover by incorporating fire history metrics and restoration treatments from 1980 to 2015 throughout the Great Basin of North America. Models including fire attributes and restoration treatments performed better than those including only climate and topographic variables. Number of fires and fire occurrence had the strongest relative effects on big sagebrush occurrence and cover, respectively. The models predicted that the probability of big sagebrush occurrence decreases by 1.2% (95% CI: -6.9%, 0.6%) when one fire occurs and cover decreases by 44.7% (95% CI: -47.9%, -41.3%) if at least one fire occurred over the 36 year period of record. Restoration practices increased the probability of big sagebrush occurrence but had minimal effect on cover. Our results demonstrate the potential value of including disturbance and land management along with climate in models to predict species distributions. As an increasing number of datasets representing land-use history become available, we anticipate that our modeling framework will have broad relevance across a range of biomes and species.


Assuntos
Artemisia , Incêndios , Teorema de Bayes , Mudança Climática , Ecossistema , América do Norte
2.
Syst Biol ; 67(6): 965-978, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548012

RESUMO

Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently available, geographically widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results demonstrate the utility in modeling intraspecific response to changing climate and they inform management and conservation strategies, by identifying haplotypes and geographic areas that may be most at risk, or most secure, under projected climate change.


Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , Pinus ponderosa/fisiologia , Filogenia , Pinus ponderosa/genética
3.
Glob Chang Biol ; 24(8): 3575-3586, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569799

RESUMO

Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information.


Assuntos
Mudança Climática , Ecossistema , Modelos Teóricos , Previsões , Fósseis , América do Norte , Pólen , Reprodutibilidade dos Testes
5.
Proc Biol Sci ; 283(1826): 20152817, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26962143

RESUMO

Species distribution models (SDMs) assume species exist in isolation and do not influence one another's distributions, thus potentially limiting their ability to predict biodiversity patterns. Community-level models (CLMs) capitalize on species co-occurrences to fit shared environmental responses of species and communities, and therefore may result in more robust and transferable models. Here, we conduct a controlled comparison of five paired SDMs and CLMs across changing climates, using palaeoclimatic simulations and fossil-pollen records of eastern North America for the past 21 000 years. Both SDMs and CLMs performed poorly when projected to time periods that are temporally distant and climatically dissimilar from those in which they were fit; however, CLMs generally outperformed SDMs in these instances, especially when models were fit with sparse calibration datasets. Additionally, CLMs did not over-fit training data, unlike SDMs. The expected emergence of novel climates presents a major forecasting challenge for all models, but CLMs may better rise to this challenge by borrowing information from co-occurring taxa.


Assuntos
Biodiversidade , Clima , Modelos Biológicos , Dispersão Vegetal , Pólen , Mudança Climática , Fósseis , América do Norte
6.
Nature ; 471(7336): 51-7, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368823

RESUMO

Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção/estatística & dados numéricos , Extinção Biológica , Animais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Planeta Terra , Espécies em Perigo de Extinção/história , Espécies em Perigo de Extinção/tendências , Fósseis , História do Século XXI , História Antiga , Atividades Humanas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...