Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Allergy Immunol ; 25(7): 674-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25376403

RESUMO

BACKGROUND: Regulatory T cells (Treg) play an essential role in early immune programming and shaping the immune response towards a pro-allergic or tolerant state. We evaluated cord blood Treg and cytokine responses to microbial and non-microbial stimuli in infants at high risk of allergic disease and their associations with development of allergic disease in the first year. METHODS: Cord blood mononuclear cells from 72 neonates were cultured with toll-like receptors (TLR2) ligands: lipoteichoic acid (LTA) and heat-killed Lactobacillus rhamnosus GG (HKL); TLR4 ligand: lipopolysaccharide (LPS); ovalbumin (OVA); anti-CD3; or media for 48 h. Treg numbers and Treg cytokines were assessed in relation to allergic disease outcomes during the first year of life (eczema and atopic sensitization). RESULTS: Infants with eczema (n = 24) had reduced percentages of FoxP3(hi)CD25(hi) Treg in LTA (p = 0.01, adj p = 0.005) and HKL (p = 0.04, adj p = 0.02) stimulated cultures as well as reduced IL-10 (p = 0.01) production following HKL stimulation compared to those without eczema (n = 48). No differences in Treg or cytokine responses to LPS, OVA or anti-CD3 were seen. Infants who developed sensitization had lower percentages of Treg following TLR2 stimulation (but not other stimuli) compared to non-sensitized infants. CONCLUSIONS: High-risk children who develop allergic disease in the first year of life have deficient Treg responses to microbial stimuli but not allergen from the time of birth, which may contribute to failure of immune tolerance development in infancy.


Assuntos
Eczema/imunologia , Lacticaseibacillus rhamnosus/imunologia , Linfócitos T Reguladores/imunologia , Antígenos de Bactérias/imunologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Sangue Fetal/imunologia , Seguimentos , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Risco , Ácidos Teicoicos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like
2.
Curr Radiopharm ; 4(1): 59-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22191615

RESUMO

There is an intense interest in the development of radiopharmaceuticals for cancer therapy. In particular, radiopharmaceuticals which involve targeting radionuclides specifically to cancer cells with the use of monoclonal antibodies (radioimmunotherapy) or peptides (targeted radiotherapy) are being widely investigated. For example, the ultra-short range Auger electron-emitting isotopes, which are discussed in this review, are being considered in the context of DNAtargeted radiotherapy. The efficient quantitative evaluation of the levels of damage caused by such potential radiopharmaceuticals is required for assessment of therapeutic efficacy and determination of relevant doses for successful treatment. The DNA double-strand break surrogate marker, γH2AX, has emerged as a useful biomonitor of damage and thus effectiveness of treatment, offering a highly specific and sensitive means of assessment. This review will cover the potential applications of γH2AX in nuclear medicine, in particular radionuclide therapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Elétrons/uso terapêutico , Histonas/biossíntese , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Biomarcadores/metabolismo , Histonas/efeitos da radiação , Humanos
3.
Genome Integr ; 2(1): 3, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21261999

RESUMO

Radiation therapy is a widely used therapeutic approach for cancer. To improve the efficacy of radiotherapy there is an intense interest in combining this modality with two broad classes of compounds, radiosensitizers and radioprotectors. These either enhance tumour-killing efficacy or mitigate damage to surrounding non-malignant tissue, respectively. Radiation exposure often results in the formation of DNA double-strand breaks, which are marked by the induction of H2AX phosphorylation to generate γH2AX. In addition to its essential role in DDR signalling and coordination of double-strand break repair, the ability to visualize and quantitate γH2AX foci using immunofluorescence microscopy techniques enables it to be exploited as an indicator of therapeutic efficacy in a range of cell types and tissues. This review will explore the emerging applicability of γH2AX as a marker for monitoring the effectiveness of radiation-modifying compounds.

4.
Chromosoma ; 120(2): 129-49, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21174214

RESUMO

Double-strand breaks represent an extremely cytolethal form of DNA damage and thus pose a serious threat to the preservation of genetic and epigenetic information. Though it is well-known that double-strand breaks such as those generated by ionising radiation are among the principal causative factors behind mutations, chromosomal aberrations, genetic instability and carcinogenesis, significantly less is known about the epigenetic consequences of double-strand break formation and repair for carcinogenesis. Double-strand break repair is a highly coordinated process that requires the unravelling of the compacted chromatin structure to facilitate repair machinery access and then restoration of the original undamaged chromatin state. Recent experimental findings have pointed to a potential mechanism for double-strand break-induced epigenetic silencing. This review will discuss some of the key epigenetic regulatory processes involved in double-strand break (DSB) repair and how incomplete or incorrect restoration of chromatin structure can leave a DSB-induced epigenetic memory of damage with potentially pathological repercussions.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Epigênese Genética , Animais , Cromatina/genética , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Epigênese Genética/efeitos da radiação , Inativação Gênica , Humanos
5.
J Vis Exp ; (42)2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20736911

RESUMO

An early molecular response to DNA double-strand breaks (DSBs) is phosphorylation of the Ser-139 residue within the terminal SQEY motif of the histone H2AX. This phosphorylation of H2AX is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR). The phosphorylated form of H2AX, referred to as gammaH2AX, spreads to adjacent regions of chromatin from the site of the DSB, forming discrete foci, which are easily visualized by immunofluorescence microscopy. Analysis and quantitation of gammaH2AX foci has been widely used to evaluate DSB formation and repair, particularly in response to ionizing radiation and for evaluating the efficacy of various radiation modifying compounds and cytotoxic compounds. Given the exquisite specificity and sensitivity of this de novo marker of DSBs, it has provided new insights into the processes of DNA damage and repair in the context of chromatin. For example, in radiation biology the central paradigm is that the nuclear DNA is the critical target with respect to radiation sensitivity. Indeed, the general consensus in the field has largely been to view chromatin as a homogeneous template for DNA damage and repair. However, with the use of gammaH2AX as molecular marker of DSBs, a disparity in gamma-irradiation-induced gammaH2AX foci formation in euchromatin and heterochromatin has been observed. Recently, we used a panel of antibodies to either mono-, di- or tri- methylated histone H3 at lysine 9 (H3K9me1, H3K9me2, H3K9me3) which are epigenetic imprints of constitutive heterochromatin and transcriptional silencing and lysine 4 (H3K4me1, H3K4me2, H3K4me3), which are tightly correlated actively transcribing euchromatic regions, to investigate the spatial distribution of gammaH2AX following ionizing radiation. In accordance with the prevailing ideas regarding chromatin biology, our findings indicated a close correlation between gammaH2AX formation and active transcription. Here we demonstrate our immunofluorescence method for detection and quantitation of gammaH2AX foci in non-adherent cells, with a particular focus on co-localization with other epigenetic markers, image analysis and 3D-modeling.


Assuntos
Imunofluorescência/métodos , Histonas/metabolismo , Células K562/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Microscopia Confocal
6.
J Vis Exp ; (40)2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20613712

RESUMO

DNA double-strand breaks (DSBs) are particularly lethal and genotoxic lesions, that can arise either by endogenous (physiological or pathological) processes or by exogenous factors, particularly ionizing radiation and radiomimetic compounds. Phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX, is an early response to DNA double-strand breaks. This phosphorylation event is mediated by the phosphatidyl-inosito 3-kinase (PI3K) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR). Overall, DSB induction results in the formation of discrete nuclear gammaH2AX foci which can be easily detected and quantitated by immunofluorescence microscopy. Given the unique specificity and sensitivity of this marker, analysis of gammaH2AX foci has led to a wide range of applications in biomedical research, particularly in radiation biology and nuclear medicine. The quantitation of gammaH2AX foci has been most widely investigated in cell culture systems in the context of ionizing radiation-induced DSBs. Apart from cellular radiosensitivity, immunofluorescence based assays have also been used to evaluate the efficacy of radiation-modifying compounds. In addition, gammaH2AX has been used as a molecular marker to examine the efficacy of various DSB-inducing compounds and is recently being heralded as important marker of ageing and disease, particularly cancer. Further, immunofluorescence-based methods have been adapted to suit detection and quantitation of gammaH2AX foci ex vivo and in vivo. Here, we demonstrate a typical immunofluorescence method for detection and quantitation of gammaH2AX foci in mouse tissues.


Assuntos
Imunofluorescência/métodos , Histonas/análise , Animais , Pulmão/química , Camundongos , Camundongos Endogâmicos BALB C
7.
J Vis Exp ; (38)2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20372103

RESUMO

DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9).


Assuntos
Dano ao DNA , Reparo do DNA , Histonas/análise , Queratinócitos/efeitos da radiação , Microscopia de Fluorescência/métodos , DNA/metabolismo , Histonas/metabolismo , Humanos , Queratinócitos/química , Queratinócitos/metabolismo , Microscopia Confocal/métodos
8.
Epigenetics ; 5(2): 129-36, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20150765

RESUMO

Double-strand breaks are one of the most critical DNA lesions with respect to cell-death and preservation of genomic integrity. Rapid phosphorylation of the histone variant H2AX at Ser-139 to form gammaH2AX is an early cellular response to DNA double-strand breaks. Visualization of discrete gammaH2AX foci using immunofluorescence-based assays has provided a sensitive and effective method for detecting DSBs which may be implicated in various pathologies including cancer, age-related diseases, chronic inflammatory diseases and ischemia-reperfusion injury. In this review, the potential utility and significance of gammaH2AX as a molecular marker of aging and disease is analysed.


Assuntos
Envelhecimento/metabolismo , Doença , Histonas/metabolismo , Envelhecimento/patologia , Animais , Biomarcadores/metabolismo , Dano ao DNA , Humanos , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...