Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 144: 139-153, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31536784

RESUMO

Trehalose is commonly used as a protein stabilizer in spray dried protein formulations delivered via the pulmonary route. Spray dried trehalose formulations are highly hygroscopic, which makes them prone to deliquescence and recrystallization when exposed to moisture, leading to impairment in aerosolization performance. The main aim of this study was to investigate and compare the effect of hydrophobic amino acids (i.e. L-leucine and L-isoleucine) in enhancing aerosolization performance and in mitigating moisture-induced changes in spray dried trehalose formulations. Trehalose was spray dried with 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine). The spray dried formulations were stored at 25 °C/50% RH for 28 days. Solid state characterization and in vitro aerosolization performance studies were performed on the spray dried formulations before and after storage. The addition of 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine) improved the emitted fractions of spray dried trehalose formulations from a dry powder inhaler. However, ≥ 40% w/w of L-leucine/L-isoleucine was needed to prevent recrystallization of trehalose in the formulations when exposed to 25 °C/50% RH for 28 days. X-ray photoelectron spectroscopy (XPS) demonstrated that samples with 40-60% w/w L-isoleucine had more amino acid on the surfaces of the particles compared to their L-leucine counterparts. This may explain the greater ability of the L-isoleucine (40-60% w/w) samples to cope with elevated humidity compared to L-leucine samples of the same concentrations, as observed in the dynamic vapour sorption (DVS) studies. In conclusion, this study demonstrated that both L-leucine and L-isoleucine were effective in enhancing aerosolization performance and mitigating moisture-induced reduction in aerosolization performance in spray dried trehalose formulations. L-isoleucine proved to be superior to L-leucine in terms of its moisture protectant effect when incorporated at the same concentration in the formulations.


Assuntos
Aminoácidos/química , Trealose/química , Administração por Inalação , Aerossóis/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Inaladores de Pó Seco/métodos , Umidade , Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Pós/química , Molhabilidade/efeitos dos fármacos
2.
Pharm Res ; 34(5): 957-970, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27738954

RESUMO

PURPOSE: To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. METHOD: Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. RESULTS: Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. CONCLUSIONS: SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.


Assuntos
Comprimidos/química , Celulose/química , Química Farmacêutica/métodos , Cristalização/métodos , Excipientes/química , Griseofulvina/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Microscopia Eletrônica de Varredura/métodos , Polietilenoglicóis/química , Pressão , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
3.
Eur J Pharm Biopharm ; 103: 13-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26955750

RESUMO

The optimal design of oral amorphous formulations benefits from the use of excipients to maintain drug supersaturation and thus ensures adequate absorption during intestinal transit. The use of surfactants for the maintenance of supersaturation in amorphous formulations has not been investigated in detail. The main aim of this study was to investigate the effect of surfactant on the dissolution behavior of neat amorphous drug and binary polymer based solid dispersion. Indomethacin was used as the model drug and the surfactants studied were polysorbate 80 and poloxamer 407. The presence of surfactants (alone or in combination with polymers) in the buffer was detrimental to the dissolution of neat amorphous indomethacin, suggesting that the surfactants promoted the crystallization of neat amorphous indomethacin. In contrast, the presence of surfactants (0.01% w/v) in the buffer resulted in a significant improvement on the dissolution behavior of binary polymer based solid dispersion. Incorporating the surfactant to the formulation to form ternary solid dispersion adversely affected the dissolution behavior. In conclusion, the use of surfactants (as wetting or solubilization agents) in dissolution studies of neat amorphous drugs requires prudent consideration. The design of amorphous formulations with optimal dissolution performance requires the appropriate selection of a combination of excipients and consideration of the method of introducing the excipients.


Assuntos
Tensoativos/farmacologia , Cristalização , Indometacina/química , Solubilidade , Espectrofotometria Infravermelho
4.
Eur J Pharm Sci ; 80: 74-81, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296864

RESUMO

Selection of a crystallinity detection tool that is able to predict the critical quality attributes of amorphous formulations is imperative for the development of process control strategies. The main aim of this study was to determine the crystallinity detection tool that best predicts the critical quality attributes (i.e. physical stability and dissolution behaviour) of amorphous material. Glibenclamide (model drug) was milled for various durations using a planetary mill and characterised using Raman spectroscopy and differential scanning calorimetry (DSC). Physical stability studies upon storage at 60°C/0% RH and dissolution studies (non-sink conditions) were performed on the milled glibenclamide samples. Different milling durations were needed to render glibenclamide fully amorphous according to Raman spectroscopy (60min) and onset of crystallisation using DSC (150min). This could be due to the superiority of DSC (onset of crystallisation) in detecting residual crystallinity in the samples milled for between 60 and 120min, which were not detectable with Raman spectroscopy. The physical stability upon storage and dissolution behaviour of the milled samples improved with increased milling duration and plateaus were reached after milling for certain periods of time (physical stability - 150min; dissolution - 120min). The residual crystallinity which was detectable with DSC (onset of crystallisation), but not with Raman spectroscopy, adversely affected the critical quality attributes of milled glibenclamide samples. In addition, mathematical simulations were performed on the dissolution data to determine the solubility advantages of the milled glibenclamide samples and to describe the crystallisation process that occurred during dissolution in pH7.4 phosphate buffer. In conclusion, the onset of crystallisation obtained from DSC measurements best predicts the critical quality attributes of milled glibenclamide samples and mathematical simulations based on the solvent-mediated crystallisation model were successfully performed on the dissolution data.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Glibureto/química , Química Farmacêutica/métodos , Cristalização , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Análise Espectral Raman
5.
Mol Pharm ; 11(1): 234-42, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24224572

RESUMO

Milling is an attractive method to prepare amorphous formulations as it does not require the use of solvents and is suitable for thermolabile drugs. One of the key critical quality attributes of milled amorphous formulations is their dissolution behavior. However, there are limited studies that have investigated the relationship between degree of disorder induced by milling and dissolution behavior. The main aim of this study was to identify the analytical technique used to characterize degree of disorder that correlates best with the recrystallization behavior during dissolution of milled glibenclamide samples. Solid state and surface changes during dissolution of milled glibenclamide samples were monitored in order to elucidate the processes that influence the dissolution behavior of milled glibenclamide samples. Glibenclamide was ball milled for different durations and analyzed using X-ray powder diffractometry (XRPD), Raman spectroscopy and differential scanning calorimetry (DSC). Recrystallization during dissolution of the milled amorphous materials was investigated using an in situ Raman setup. SEM was used to monitor the surfaces of the compacts during dissolution. XRPD, Raman spectroscopy and DSC indicated that glibenclamide was fully amorphous after milling for 30, 60, and 120 min, respectively. 'DSC amorphous' (i.e. fully amorphous according to the onset of crystallization obtained from DSC) glibenclamide samples experienced negligible recrystallization which had no effect on the dissolution profiles. Samples that were not 'DSC amorphous' experienced recrystallization which resulted in a decrease in dissolution rate. Unexpected elevated dissolution rate was observed initially during dissolution for samples milled for 15 to 45 min, and this was related to particle loss from surfaces of the disks during dissolution. In conclusion, the onset of crystallization obtained from DSC best predicts the recrystallization of glibenclamide during dissolution. Recrystallization and particle loss from the surface of the dissolution should be considered when interpreting the dissolution data of milled glibenclamide samples.


Assuntos
Química Farmacêutica/métodos , Glibureto/química , Pós/química , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Solubilidade , Análise Espectral Raman , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...