Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0281646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36791120

RESUMO

Graph models are standard for representing mutual relationships between sets of entities. Often, graphs deal with a large number of entities with a small number of connections (e.g. social media relationships, infectious disease spread). The distances or similarities between such large graphs are known to be well established by the Graphlet Correlation Distance (GCD). This paper deals with small graphs (with potentially high densities of connections) that have been somewhat neglected in the literature but that concern important fora like sociology, ecology and fisheries, to mention some examples. First, based on numerical experiments, we study the conditions under which Erdos-Rényi, Fitness Scale-Free, Watts-Strogatz small-world and geometric graphs can be distinguished by a specific GCD measure based on 11 orbits, the GCD11. This is done with respect to the density and the order (i.e. the number of nodes) of the graphs when comparing graphs with the same and different orders. Second, we develop a randomization statistical test based on the GCD11 to compare empirical graphs to the four possible null models used in this analysis and apply it to a fishing case study where graphs represent pairwise proximity between fishing vessels. The statistical test rules out independent pairing within the fleet studied which is a standard assumption in fisheries. It also illustrates the difficulty to identify similarities between real-world small graphs and graph models.


Assuntos
Matemática , Pesqueiros
2.
Mov Ecol ; 6: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30607247

RESUMO

In movement ecology, the few works that have taken collective behaviour into account are data-driven and rely on simplistic theoretical assumptions, relying in metrics that may or may not be measuring what is intended. In the present paper, we focus on pairwise joint-movement behaviour, where individuals move together during at least a segment of their path. We investigate the adequacy of twelve metrics introduced in previous works for assessing joint movement by analysing their theoretical properties and confronting them with contrasting case scenarios. Two criteria are taken into account for review of those metrics: 1) practical use, and 2) dependence on parameters and underlying assumptions. When analysing the similarities between the metrics as defined, we show how some of them can be expressed using general mathematical forms. In addition, we evaluate the ability of each metric to assess specific aspects of joint-movement behaviour: proximity (closeness in space-time) and coordination (synchrony) in direction and speed. We found that some metrics are better suited to assess proximity and others are more sensitive to coordination. To help readers choose metrics, we elaborate a graphical representation of the metrics in the coordination and proximity space based on our results, and give a few examples of proximity and coordination focus in different movement studies.

3.
PLoS One ; 8(10): e77566, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204873

RESUMO

Ecosystems are usually complex, nonlinear and strongly influenced by poorly known environmental variables. Among these systems, marine ecosystems have high uncertainties: marine populations in general are known to exhibit large levels of natural variability and the intensity of fishing efforts can change rapidly. These uncertainties are a source of risks that threaten the sustainability of both fish populations and fishing fleets targeting them. Appropriate management measures have to be found in order to reduce these risks and decrease sensitivity to uncertainties. Methods have been developed within decision theory that aim at allowing decision making under severe uncertainty. One of these methods is the information-gap decision theory. The info-gap method has started to permeate ecological modelling, with recent applications to conservation. However, these practical applications have so far been restricted to simple models with analytical solutions. Here we implement a deterministic approach based on decision theory in a complex model of the Eastern English Channel. Using the ISIS-Fish modelling platform, we model populations of sole and plaice in this area. We test a wide range of values for ecosystem, fleet and management parameters. From these simulations, we identify management rules controlling fish harvesting that allow reaching management goals recommended by ICES (International Council for the Exploration of the Sea) working groups while providing the highest robustness to uncertainties on ecosystem parameters.


Assuntos
Conservação dos Recursos Naturais , Tomada de Decisões , Pesqueiros , Oceanos e Mares , Incerteza , Animais , Ecossistema , Peixes , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...