Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(50): 31914-31922, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257571

RESUMO

Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.


Assuntos
Membrana Celular/metabolismo , Dimetilaliltranstransferase/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neoplasias/patologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores de Estrogênio/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sistemas CRISPR-Cas/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neoplasias/genética , Proteínas Associadas à Matriz Nuclear/genética , Prenilação de Proteína , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Estrogênio/genética
2.
Nature ; 576(7787): 482-486, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827279

RESUMO

The most frequently mutated oncogene in cancer is KRAS, which uses alternative fourth exons to generate two gene products (KRAS4A and KRAS4B) that differ only in their C-terminal membrane-targeting region1. Because oncogenic mutations occur in exons 2 or 3, two constitutively active KRAS proteins-each capable of transforming cells-are encoded when KRAS is activated by mutation2. No functional distinctions among the splice variants have so far been established. Oncogenic KRAS alters the metabolism of tumour cells3 in several ways, including increased glucose uptake and glycolysis even in the presence of abundant oxygen4 (the Warburg effect). Whereas these metabolic effects of oncogenic KRAS have been explained by transcriptional upregulation of glucose transporters and glycolytic enzymes3-5, it is not known whether there is direct regulation of metabolic enzymes. Here we report a direct, GTP-dependent interaction between KRAS4A and hexokinase 1 (HK1) that alters the activity of the kinase, and thereby establish that HK1 is an effector of KRAS4A. This interaction is unique to KRAS4A because the palmitoylation-depalmitoylation cycle of this RAS isoform enables colocalization with HK1 on the outer mitochondrial membrane. The expression of KRAS4A in cancer may drive unique metabolic vulnerabilities that can be exploited therapeutically.


Assuntos
Hexoquinase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação Alostérica , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Glicólise , Guanosina Trifosfato/metabolismo , Hexoquinase/química , Humanos , Técnicas In Vitro , Isoenzimas/metabolismo , Lipoilação , Masculino , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/metabolismo , Ligação Proteica , Transporte Proteico
3.
Evol Dev ; 15(6): 406-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24261442

RESUMO

Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We propose that the dependence of Dm-Ftz-F1 on interaction with the homeodomain protein Ftz which is expressed in stripes in Drosophila, loosened constraints on Dm-ftz-f1 expression, allowing for ubiquitous expression of this pair-rule gene in Drosophila.


Assuntos
Evolução Molecular , Proteínas de Insetos/genética , Receptores Nucleares Órfãos/genética , Tribolium/embriologia , Tribolium/genética , Animais , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Receptores Nucleares Órfãos/química , Receptores Nucleares Órfãos/metabolismo , Tribolium/metabolismo
4.
PLoS One ; 8(4): e60261, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560084

RESUMO

The adult Drosophila melanogaster body develops from imaginal discs, groups of cells set-aside during embryogenesis and expanded in number during larval stages. Specification and development of Drosophila imaginal discs have been studied for many years as models of morphogenesis. These studies are often based on mutations with large developmental effects, mutations that are often lethal in embryos when homozygous. Such forward genetic screens can be limited by factors such as early lethality and genetic redundancy. To identify additional genes and genetic pathways involved in leg imaginal disc development, we employed a Genome Wide Association Study utilizing the natural genetic variation in leg proportionality found in the Drosophila Genetic Reference Panel fly lines. In addition to identifying genes already known to be involved in leg development, we identified several genes involved in pathways that had not previously been linked with leg development. Several of the genes appear to be involved in signaling activities, while others have no known roles at this time. Many of these uncharacterized genes are conserved in mammals, so we can now begin to place these genes into developmental contexts. Interestingly, we identified five genes which, when their function is reduced by RNAi, cause an antenna-to-leg transformation. Our results demonstrate the utility of this approach, integrating the tools of quantitative and molecular genetics to study developmental processes, and provide new insights into the pathways and networks involved in Drosophila leg development.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Animais , Comunicação Celular , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Discos Imaginais/embriologia , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Morfogênese/genética , Mutação , RNA Interferente Pequeno/genética , Transdução de Sinais
5.
Development ; 140(6): 1262-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23406901

RESUMO

The planar cell polarity (PCP; non-canonical Wnt) pathway is required to orient the cells within the plane of an epithelium. Here, we show that cofilin 1 (Cfl1), an actin-severing protein, and Vangl2, a core PCP protein, cooperate to control PCP in the early mouse embryo. Two aspects of planar polarity can be analyzed quantitatively at cellular resolution in the mouse embryo: convergent extension of the axial midline; and posterior positioning of cilia on cells of the node. Analysis of the spatial distribution of brachyury(+) midline cells shows that the Cfl1 mutant midline is normal, whereas Vangl2 mutants have a slightly wider midline. By contrast, midline convergent extension fails completely in Vangl2 Cfl1 double mutants. Planar polarity is required for the posterior positioning of cilia on cells in the mouse node, which is essential for the initiation of left-right asymmetry. Node cilia are correctly positioned in Cfl1 and Vangl2 single mutants, but cilia remain in the center of the cell in Vangl2 Cfl1 double mutants, leading to randomization of left-right asymmetry. In both the midline and node, the defect in planar polarity in the double mutants arises because PCP protein complexes fail to traffic to the apical cell membrane, although other aspects of apical-basal polarity are unaffected. Genetic and pharmacological experiments demonstrate that F-actin remodeling is essential for the initiation, but not maintenance, of PCP. We propose that Vangl2 and cofilin cooperate to target Rab11(+) vesicles containing PCP proteins to the apical membrane during the initiation of planar cell polarity.


Assuntos
Padronização Corporal/genética , Polaridade Celular/genética , Cofilina 1/fisiologia , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/fisiologia , Animais , Células Cultivadas , Cílios/genética , Cílios/metabolismo , Cílios/fisiologia , Cofilina 1/genética , Cofilina 1/metabolismo , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Epistasia Genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fenótipo
6.
Proc Natl Acad Sci U S A ; 108(21): 8692-7, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555575

RESUMO

Axin proteins are key negative regulators of the canonical Wnt signal transduction pathway. Although Axin2 null mice are viable, we identified an unusual ENU-induced recessive allele of Axin2, canp, that causes midgestation lethality in homozygotes. We show that the Axin2(canp) mutation is a V26D substitution in an invariant N-terminal sequence motif and that the Axin2(canp) protein is more stable than wild type. As predicted for an increased level of a negative regulator, the Axin2(canp) mutation leads to decreased Wnt signaling in most tissues, and this can account for most of the morphological phenotypes of Axin2(canp) mutants. In contrast, there is a paradoxical increase in canonical Wnt activity in the late primitive streak of all Axin2(canp) mutant embryos that is associated with the formation of an ectopic tail in some mutants. Treatment of wild-type embryos with an inhibitor of Tankyrase that stabilizes Axin proteins also causes inhibition of Wnt signaling in anterior regions of the embryo and a gain of Wnt signaling in the primitive streak. The results indicate that although increased stability of Axin2 leads to a loss of canonical Wnt signaling in most tissues, stabilized Axin2 enhances Wnt pathway activity in a specific progenitor population in the late primitive streak.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/agonistas , Proteínas Wnt/antagonistas & inibidores , Animais , Proteína Axina , Proteínas do Citoesqueleto/genética , Embrião de Mamíferos , Camundongos , Mutação , Especificidade de Órgãos , Estabilidade Proteica
7.
Dev Biol ; 333(1): 90-107, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19576200

RESUMO

During development, cells craft an impressive array of actin-based structures, mediating events as diverse as cytokinesis, apical constriction, and cell migration. One challenge is to determine how cells regulate actin assembly and disassembly to carry out these cell behaviors. During Drosophila oogenesis diverse cell behaviors are seen in the soma and germline. We used oogenesis to explore developmental roles of two important actin regulators: Enabled/VASP proteins and Capping protein. We found that Enabled plays an important role in cortical integrity of nurse cells, formation of robust bundled actin filaments in late nurse cells that facilitate nurse cell dumping, and migration of somatic border cells. During nurse cell dumping, Enabled localizes to barbed ends of the nurse cell actin filaments, suggesting its mechanism of action. We further pursued this mechanism using mutant Enabled proteins, each affecting one of its protein domains. These data suggest critical roles for the EVH2 domain and its tetramerization subdomain, while the EVH1 domain appears less critical. Enabled appears to be negatively regulated during oogenesis by Abelson kinase. We also explored the function of Capping protein. This revealed important roles in oocyte determination, nurse cell cortical integrity and nurse cell dumping, and support the idea that Capping protein and Enabled act antagonistically during dumping. Together these data reveal places that these actin regulators shape oogenesis.


Assuntos
Proteínas de Capeamento de Actina/fisiologia , Citoesqueleto de Actina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Animais , Movimento Celular/fisiologia , Forma Celular/fisiologia , Drosophila , Feminino , Oogênese/fisiologia
8.
Genetics ; 181(3): 1065-76, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19064709

RESUMO

Genetic background effects contribute to the phenotypic consequences of mutations and are pervasive across all domains of life that have been examined, yet little is known about how they modify genetic systems. In part this is due to the lack of tractable model systems that have been explicitly developed to study the genetic and evolutionary consequences of background effects. In this study we demonstrate that phenotypic expressivity of the scalloped(E3) (sd(E3)) mutation of Drosophila melanogaster is background dependent and is the result of at least one major modifier segregating between two standard lab wild-type strains. We provide evidence that at least one of the modifiers is linked to the vestigial region and demonstrate that the background effects modify the spatial distribution of known sd target genes in a genotype-dependent manner. In addition, microarrays were used to examine the consequences of genetic background effects on the global transcriptome. Expression differences between wild-type strains were found to be as large as or larger than the effects of mutations with substantial phenotypic effects, and expression differences between wild type and mutant varied significantly between genetic backgrounds. Significantly, we demonstrate that the epistatic interaction between sd(E3) and an optomotor blind mutation is background dependent. The results are discussed within the context of developing a complex but more realistic view of the consequences of genetic background effects with respect to mutational analysis and studies of epistasis and cryptic genetic variation segregating in natural populations.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genoma de Inseto/genética , Mutação , Fatores de Transcrição/genética , Asas de Animais/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Epistasia Genética , Ligação Genética , Variação Genética , Genômica , Dados de Sequência Molecular , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transcrição Gênica
9.
Genetics ; 179(1): 441-53, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18493063

RESUMO

The C2H2 zinc-finger-containing transcription factors encoded by the disconnected (disco) and teashirt (tsh) genes contribute to the regionalization of the Drosophila embryo by establishing fields in which specific Homeotic complex (Hom-C) proteins can function. In Drosophila embryos, disco and the paralogous disco-related (disco-r) are expressed throughout most of the epidermis of the head segments, but only in small patches in the trunk segments. Conversely, tsh is expressed extensively in the trunk segments, with little or no accumulation in the head segments. Little is known about the regulation of these genes; for example, what limits their expression to these domains? Here, we report the regulatory effects of gap genes on the spatial expression of disco, disco-r, and tsh during Drosophila embryogenesis. The data shed new light on how mutations in giant (gt) affect patterning within the anterior gt domain, demonstrating homeotic function in this domain. However, the homeosis does not occur through altered expression of the Hom-C genes but through changes in the regulation of disco and tsh.


Assuntos
Padronização Corporal/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Microscopia Confocal , Mutação/genética , Proteínas Repressoras/genética
10.
Dev Biol ; 309(1): 56-69, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17643406

RESUMO

Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.


Assuntos
Evolução Biológica , Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Tribolium/metabolismo , Animais , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Cabeça/embriologia , Cabeça/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Tribolium/embriologia , Tribolium/crescimento & desenvolvimento
11.
Development ; 134(11): 2027-39, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17507404

RESUMO

Studies in cultured cells and in vitro have identified many actin regulators and begun to define their mechanisms of action. Among these are Enabled (Ena)/VASP proteins, anti-Capping proteins that influence fibroblast migration, growth cone motility, and keratinocyte cell adhesion in vitro. However, partially redundant family members in mammals and maternal Ena contribution in Drosophila previously prevented assessment of the roles of Ena/VASP proteins in embryonic morphogenesis in flies or mammals. We used several approaches to remove maternal and zygotic Ena function, allowing us to address this question. We found that inactivating Ena does not disrupt cell adhesion or epithelial organization, suggesting its role in these processes is cell type-specific. However, Ena plays an important role in many morphogenetic events, including germband retraction, segmental groove retraction and head involution, whereas it is dispensable for other morphogenetic movements. We focused on dorsal closure, analyzing mechanisms by which Ena acts. Ena modulates filopodial number and length, thus influencing the speed of epithelial zippering and the ability of cells to match with correct neighbors. We also explored filopodial regulation in cultured Drosophila cells and embryos. These data provide new insights into developmental and mechanistic roles of this important actin regulator.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Epitélio/embriologia , Morfogênese/fisiologia , Actinas/metabolismo , Animais , Imuno-Histoquímica , Morfogênese/genética , Pseudópodes/fisiologia
12.
Curr Opin Genet Dev ; 15(4): 422-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15979870

RESUMO

Hox proteins regulate specific sets of target genes to give rise to morphological distinctions along the anterior-posterior body axis of metazoans. Though they have high developmental specificity, Hox proteins have low DNA binding specificity, so how they select the appropriate target genes has remained enigmatic. There is general agreement that cofactors provide additional specificity, but a comprehensive model of Hox control of gene expression has not emerged. There is now evidence that a global network of zinc finger transcription factors contributes to patterning of the Drosophila embryo. These zinc finger proteins appear to establish fields in which certain Hox proteins can function. Though the nature of these fields is uncertain at this time, it is possible that these zinc finger proteins are Hox cofactors, providing additional specificity during Hox target-gene selection. Furthermore, these zinc finger proteins are conserved, as are aspects of their anterior-posterior expression, suggesting that their roles might be conserved, as well. Perhaps this layer in the genetic control of body patterning will help bridge some of the chasms that remain in our understanding of the genetic control of pattern formation.


Assuntos
Padronização Corporal/genética , Dípteros/genética , Proteínas de Homeodomínio/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Dípteros/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Modelos Genéticos , Homologia de Sequência de Aminoácidos , Dedos de Zinco/genética
13.
Development ; 131(12): 2781-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15142974

RESUMO

During animal development, the HOM-C/HOX proteins direct axial patterning by regulating region-specific expression of downstream target genes. Though much is known about these pathways, significant questions remain regarding the mechanisms of specific target gene recognition and regulation, and the role of co-factors. From our studies of the gnathal and trunk-specification proteins Disconnected (DISCO) and Teashirt (TSH), respectively, we present evidence for a network of zinc-finger transcription factors that regionalize the Drosophila embryo. Not only do these proteins establish specific regions within the embryo, but their distribution also establishes where specific HOM-C proteins can function. In this manner, these factors function in parallel to the HOM-C proteins during axial specification. We also show that in tsh mutants, disco is expressed in the trunk segments, probably explaining the partial trunk to head transformation reported in these mutants, but more importantly demonstrating interactions between members of this regionalization network. We conclude that a combination of regionalizing factors, in concert with the HOM-C proteins, promotes the specification of individual segment identity.


Assuntos
Padronização Corporal/fisiologia , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Dedos de Zinco/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/fisiologia , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...