Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 8(16): 3534-3541, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31868198

RESUMO

Fluorescent and magnetic materials play a significant role in biosensor technology, enabling sensitive quantification and separations with applications in diagnostics, purification, quality control, and therapeutics. Here, we present a magneto-fluorescent biosensor/separations platform consisting of quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) that are separately encapsulated in amphiphilic block co-polymer micelles conjugated to DNA or protein (i.e., single-stranded (ss) DNA derived from the mRNA of the tumor suppressor protein p53 or avidin protein). Analytes were detected via an aggregation sandwich assay upon binding of at least 1 QD and 1 SPION-containing micelle to result in a fluorescent/magnetic composite. Multiplexed isolation of protein and DNA biomolecules was demonstrated by using QDs of varying emission wavelength; QD fluorescence intensity could be correlated with analyte concentration. Sequential or parallel biomolecule separation was achieved by adding appropriately functionalized SPION-containing micelles and applying user-controlled magnetic fields via patterned magnetic disks and wires. QD fluorescence was used to continuously visualize analyte separation during this process. This QD/SPION platform is simple to use, demonstrates ∼10-16 M sensitivity in analyte detection (comparable to competing QD biosensors based on energy transfer) with specificity against 1 and 2 basepair mismatches in DNA detection, molecular separations capability in solutions of ∼10-10 M, and permits simultaneous or parallel, multiplexed separation of protein and DNA. Thus, this versatile platform enables self-assembly-based rapid, sensitive, and specific detection and separation of biomolecules, simultaneously and with real-time visualization. This technology demonstrates potential for nanoscale assembly, biosensing, and bioseparations.


Assuntos
DNA de Neoplasias/análise , Compostos Férricos/química , Nanopartículas de Magnetita/química , Pontos Quânticos/química , Avidina/química , Técnicas Biossensoriais , Humanos , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Proteína Supressora de Tumor p53/química
2.
Int J Nanomedicine ; 13: 351-366, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29391794

RESUMO

PURPOSE: Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. METHODS: Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, "PolyDots"), consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles. RESULTS: PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30%) and are greater than those obtained from PS-b-PEO micelles (ie, ~7%). Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant functionality, and can be produced at scale using electrospray. CONCLUSION: Encapsulation of PLGA within micelles provides a bottom-up route for the synthesis of sub-100 nm PLGA-based nanocarriers with enhanced stability and drug-loading capacity, and tunable drug release, suitable for potential clinical applications.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Linhagem Celular Tumoral , Dexametasona/administração & dosagem , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Emulsões , Endocitose/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Poliestirenos/química
3.
Biotechnol J ; 13(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28941258

RESUMO

The microtubule (MT)-kinesin system has been extensively studied because of its role in cellular processes, as well as its potential use for controllably transporting objects at the nanoscale. Thus, there is substantial interest in methods to evaluate MT properties, including bending radius and the binding energy of kinesin motor proteins to MT tracks. Current methods to identify these properties include optical tweezers, microfluidic devices, and magnetic fields. Here, the use of magnetic quantum dots (i.e., MagDots) is evaluated as a method to study MT-kinesin interactions via applied magnetic forces. Magnetic fields are generated using a magnetic needle whose field gradient is quantified by finite element modeling (FEM). Magnetic force is applied to MagDot-labeled MTs and demonstrated sufficient to steer and detach MTs from kinesin-coated surfaces. Taking advantage of the dual-functionality of MagDots, the magnetic force experienced by a single MagDot and the number of MagDots on MTs are determined. The total force exerted on MTs by MagDots is estimated to be ≈0.94-2.47 pN. This approach could potentially be used to interrogate MT properties and MT-kinesin interactions, enhancing our biological understanding of this system and enabling further development of MT shuttles for nanotransport.


Assuntos
Cinesinas/química , Substâncias Macromoleculares/química , Microtúbulos/química , Pontos Quânticos/química , Transporte Biológico , Análise de Elementos Finitos , Magnetismo , Ligação Proteica , Propriedades de Superfície
4.
Biotechnol J ; 12(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28731527

RESUMO

Immunomagnetic separation is used to isolate circulating endothelial cells (ECs) and endothelial progenitor cells (EPCs) for diagnostics and tissue engineering. However, potentially detrimental changes in cell properties have been observed post-separation. Here, the effect of mechanical force, which is naturally applied during immunomagnetic separation, on proliferation of human umbilical vein endothelial cells (HUVEC), kinase insert domain-positive receptor (KDR) cells, and peripheral blood mononuclear cells (PBMCs). Cells are exposed to CD31 or Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) targeted MACSi beads at varying bead to cell ratios and compared to free antibody and unconjugated beads. A vertical magnetic gradient is applied to static 2D cultures, and a magnetic cell sorter is used to analyze cells in dynamic flow. No significant difference in EC proliferation is observed for controls or VEGFR2-targeting beads, whereas CD31-conjugated beads increase proliferation in a dose dependent manner in static 2-D cultures. This effect occurs in the absence of magnetic field, but is more pronounced with magnetic force. After flow sorting, similar increases in proliferation are seen for CD31 targeting beads. Thus, the effects of targeting antibody and magnetic force applied should be considered when designing immunomagnetic separation protocols for ECs.


Assuntos
Proliferação de Células/fisiologia , Células Endoteliais/fisiologia , Mecanotransdução Celular/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Humanos
5.
Nanotechnology ; 25(19): 195601, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24762566

RESUMO

Quantum dots (QDs) have tremendous potential for biomedical imaging, including super-resolution techniques that permit imaging below the diffraction limit. However, most QDs are produced via organic methods, and hence require surface treatment to render them water-soluble for biological applications. Previously, we reported a micelle-templating method that yields nanocomposites containing multiple core/shell ZnS-CdSe QDs within the same nanocarrier, increasing overall particle brightness and virtually eliminating QD blinking. Here, this technique is extended to the encapsulation of Mn-doped ZnSe QDs (Mn-ZnSe QDs), which have potential applications in super-resolution imaging as a result of the introduction of Mn(2+) dopant energy levels. The size, shape and fluorescence characteristics of these doped QD-micelles were compared to those of micelles created using core/shell ZnS-CdSe QDs (ZnS-CdSe QD-micelles). Additionally, the stability of both types of particles to photo-oxidation was investigated. Compared to commercial QDs, micelle-templated QDs demonstrated superior fluorescence intensity, higher signal-to-noise ratios, and greater stability against photo-oxidization,while reducing blinking. Additionally, the fluorescence of doped QD-micelles could be modulated from a bright 'on' state to a dark 'off' state, with a modulation depth of up to 76%, suggesting the potential of doped QD-micelles for applications in super-resolution imaging.


Assuntos
Micelas , Microscopia de Fluorescência , Nanocompostos/química , Pontos Quânticos/química , Fluorescência , Compostos de Manganês/química , Compostos de Selênio/química , Razão Sinal-Ruído , Compostos de Zinco/química
6.
Biotechnol J ; 8(12): 1424-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24105975

RESUMO

Quantum dots (QDs) have great promise in biological imaging, and as this promise is realized, there has been increasing interest in combining the benefits of QDs with those of other materials to yield composites with multifunctional properties. One of the most common materials combined with QDs is magnetic materials, either as ions (e.g. gadolinium) or as nanoparticles (e.g. superparamagnetic iron oxide nanoparticles, SPIONs). The fluorescent property of the QDs permits visualization, whereas the magnetic property of the composite enables imaging, magnetic separation, and may even have therapeutic benefit. In this review, the synthesis of fluorescent-magnetic nanoparticles, including magnetic QDs is explored; and the applications of these materials in imaging, separations, and theranostics are discussed. As the properties of these materials continue to improve, QDs have the potential to greatly impact biological imaging, diagnostics, and treatment.


Assuntos
Biotecnologia , Nanopartículas de Magnetita , Nanocompostos , Nanomedicina , Pontos Quânticos
7.
Chem Eng Prog ; 108: 41-46, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25580052

RESUMO

The ability to quickly analyze, separate, and manipulate multiple types of biomarkers from small sample volumes is a significant step toward personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...