Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
AIMS Neurosci ; 10(2): 144-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426773

RESUMO

AIM: Synthetic MRI (SyMRI) works on the MDME sequence, which acquires the relaxation properties of the brain and helps to measure the accurate tissue properties in 6 minutes. The aim of this study was to evaluate the synthetic MRI (SyMRI)-generated myelin (MyC) to white matter (WM) ratio, the WM fraction (WMF), MyC partial maps performing normative brain volumetry to investigate MyC loss in multiple sclerosis (MS) patients with white-matter hyperintensites (WMHs) and non-MS patients with WMHs in a clinical setting. MATERIALS and METHODS: Synthetic MRI images were acquired from 15 patients with MS, and from 15 non-MS patients on a 3T MRI scanner (Discovery MR750w; GE Healthcare; Milwaukee, USA) using MAGiC, a customized version of SyntheticMR's SyMRI® IMAGE software marketed by GE Healthcare under a license agreement. Fast multi-delay multi-echo acquisition was performed with a 2D axial pulse sequence with different combinations of echo time (TEs) and saturation delay times. The total image acquisition time was 6 minutes. SyMRI image analysis was done using SyMRI software (SyMRI Version: 11.3.6; Synthetic MR, Linköping, Sweden). SyMRI data were used to generate the MyC partial maps and WMFs to quantify the signal intensities of test group and control group, andcontrol group , and their mean values were recorded. All patients also underwent conventional diffusion-weighted imaging, i.e., T1w and T2w imaging. RESULTS: The results showed that the WMF was significantly lower in the test group than in the control group (38.8% vs 33.2%, p < 0.001). The Mann-Whitney U nonparametric t-test revealed a significant difference in the mean myelin volume between the test group and the control group (158.66 ± 32.31 vs. 138.29 ± 29.28, p = 0.044). Also, there were no significant differences in the gray matter fraction and intracranial volume between the test group and the control group. CONCLUSIONS: We observed MyC loss in test group using quantitative SyMRI. Thus, myelin loss in MS patients can be quantitatively evaluated using SyMRI.

2.
Proc Natl Acad Sci U S A ; 120(19): e2207025120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126677

RESUMO

The visual system develops abnormally when visual input is absent or degraded during a critical period early in life. Restoration of the visual input later in life is generally thought to have limited benefit because the visual system will lack sufficient plasticity to adapt to and utilize the information from the eyes. Recent evidence, however, shows that congenitally blind adolescents can recover both low-level and higher-level visual function following surgery. In this study, we assessed behavioral performance in both a visual acuity and a face perception task alongside longitudinal structural white matter changes in terms of fractional anisotropy (FA) and mean diffusivity (MD). We studied congenitally blind patients with dense bilateral cataracts, who received cataract surgery at different stages of adolescence. Our goal was to differentiate between age- and surgery-related changes in both behavioral performance and structural measures to identify neural correlates which might contribute to recovery of visual function. We observed surgery-related long-term increases of structural integrity of late-visual pathways connecting the occipital regions with ipsilateral fronto-parieto-temporal regions or homotopic contralateral areas. Comparison to a group of age-matched healthy participants indicated that these improvements went beyond the expected changes in FA and MD based on maturation alone. Finally, we found that the extent of behavioral improvement in face perception was mediated by changes in structural integrity in late visual pathways. Our results suggest that sufficient plasticity remains in adolescence to partially overcome abnormal visual development and help localize the sites of neural change underlying sight recovery.


Assuntos
Catarata , Substância Branca , Adolescente , Humanos , Cegueira , Visão Ocular , Olho
3.
Eur Radiol ; 33(7): 5087-5096, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36690774

RESUMO

OBJECTIVE: Automatic MR imaging segmentation of the prostate provides relevant clinical benefits for prostate cancer evaluation such as calculation of automated PSA density and other critical imaging biomarkers. Further, automated T2-weighted image segmentation of central-transition zone (CZ-TZ), peripheral zone (PZ), and seminal vesicle (SV) can help to evaluate clinically significant cancer following the PI-RADS v2.1 guidelines. Therefore, the main objective of this work was to develop a robust and reproducible CNN-based automatic prostate multi-regional segmentation model using an intercontinental cohort of prostate MRI. METHODS: A heterogeneous database of 243 T2-weighted prostate studies from 7 countries and 10 machines of 3 different vendors, with the CZ-TZ, PZ, and SV regions manually delineated by two experienced radiologists (ground truth), was used to train (n = 123) and test (n = 120) a U-Net-based model with deep supervision using a cyclical learning rate. The performance of the model was evaluated by means of dice similarity coefficient (DSC), among others. Segmentation results with a DSC above 0.7 were considered accurate. RESULTS: The proposed method obtained a DSC of 0.88 ± 0.01, 0.85 ± 0.02, 0.72 ± 0.02, and 0.72 ± 0.02 for the prostate gland, CZ-TZ, PZ, and SV respectively in the 120 studies of the test set when comparing the predicted segmentations with the ground truth. No statistically significant differences were found in the results obtained between manufacturers or continents. CONCLUSION: Prostate multi-regional T2-weighted MR images automatic segmentation can be accurately achieved by U-Net like CNN, generalizable in a highly variable clinical environment with different equipment, acquisition configurations, and population. KEY POINTS: • Deep learning techniques allows the accurate segmentation of the prostate in three different regions on MR T2w images. • Multi-centric database proved the generalization of the CNN model on different institutions across different continents. • CNN models can be used to aid on the diagnosis and follow-up of patients with prostate cancer.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Redes Neurais de Computação , Espectroscopia de Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
4.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35132408

RESUMO

The Coronavirus Disease 2019 (COVID-19) has affected all aspects of life around the world. Neuroimaging evidence suggests the novel coronavirus can attack the central nervous system (CNS), causing cerebro-vascular abnormalities in the brain. This can lead to focal changes in cerebral blood flow and metabolic oxygen consumption rate in the brain. However, the extent and spatial locations of brain alterations in COVID-19 survivors are largely unknown. In this study, we have assessed brain functional connectivity (FC) using resting-state functional MRI (RS-fMRI) in 38 (25 males) COVID patients two weeks after hospital discharge, when PCR negative and 31 (24 males) healthy subjects. FC was estimated using independent component analysis (ICA) and dual regression. When compared to the healthy group, the COVID group demonstrated significantly enhanced FC in the basal ganglia and precuneus networks (family wise error (fwe) corrected, pfwe < 0.05), while, on the other hand, reduced FC in the language network (pfwe < 0.05). The COVID group also experienced higher fatigue levels during work, compared to the healthy group (p < 0.001). Moreover, within the precuneus network, we noticed a significant negative correlation between FC and fatigue scores across groups (Spearman's ρ = -0.47, p = 0.001, r2 = 0.22). Interestingly, this relationship was found to be significantly stronger among COVID survivors within the left parietal lobe, which is known to be structurally and functionally associated with fatigue in other neurological disorders.

5.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36292071

RESUMO

BACKGROUND: Missed findings in chest X-ray interpretation are common and can have serious consequences. METHODS: Our study included 2407 chest radiographs (CXRs) acquired at three Indian and five US sites. To identify CXRs reported as normal, we used a proprietary radiology report search engine based on natural language processing (mPower, Nuance). Two thoracic radiologists reviewed all CXRs and recorded the presence and clinical significance of abnormal findings on a 5-point scale (1-not important; 5-critical importance). All CXRs were processed with the AI model (Qure.ai) and outputs were recorded for the presence of findings. Data were analyzed to obtain area under the ROC curve (AUC). RESULTS: Of 410 CXRs (410/2407, 18.9%) with unreported/missed findings, 312 (312/410, 76.1%) findings were clinically important: pulmonary nodules (n = 157), consolidation (60), linear opacities (37), mediastinal widening (21), hilar enlargement (17), pleural effusions (11), rib fractures (6) and pneumothoraces (3). AI detected 69 missed findings (69/131, 53%) with an AUC of up to 0.935. The AI model was generalizable across different sites, geographic locations, patient genders and age groups. CONCLUSION: A substantial number of important CXR findings are missed; the AI model can help to identify and reduce the frequency of important missed findings in a generalizable manner.

6.
J Clin Neurosci ; 102: 26-35, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696817

RESUMO

INTRODUCTION: Multidimensional diffusion MRI (MDD MRI) is a novel diffusion technique that uses advanced gradient waveforms for microstructural tissue characterization to provide information about average rate, anisotropy and orientation of the diffusion and to disentangle the signal fraction from specific cell types i.e., elongated cells, isotropic cells and free water. AIM: To review the diagnostic potential of MDD MRI in the clinical setting for microstructural tissue characterization in patients with neurological disorders to aid in patient care and treatment. METHOD: A scoping review on the clinical applications of MDD MRI was conducted from original articles published in PubMed and Scopus from 2015 to 2021 using the keywords "Multidimensional diffusion MRI" OR "diffusion tensor distribution" OR "Tensor-Valued Diffusion" OR "b-tensor encoding" OR "microscopic diffusion anisotropy" OR "microscopic anisotropy" OR "microscopic fractional anisotropy" OR "double diffusion encoding" OR "triple diffusion encoding" OR "double pulsed field gradients" OR "double wave vector" OR "correlation tensor imaging" AND "brain" OR "axons". RESULTS: Initially 145 articles were screened and after applying inclusion and exclusion criteria, nine articles were included in the final analysis. In most of these studies, microscopic diffusion anisotropy within the lesion showed deviation from the normal-appearing tissue. CONCLUSION: Multidimensional diffusion MRI can provide better quantification and visualization of tissue microstructure than conventional diffusion MRI and can be used in the clinical setting for diagnosis of neurological disorders.


Assuntos
Imagem de Tensor de Difusão , Doenças do Sistema Nervoso , Anisotropia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/patologia
7.
Neuroimage Rep ; 2(2): 100095, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496469

RESUMO

Background: Among systemic abnormalities caused by the novel coronavirus, little is known about the critical attack on the central nervous system (CNS). Few studies have shown cerebrovascular pathologies that indicate CNS involvement in acute patients. However, replication studies are necessary to verify if these effects persist in COVID-19 survivors more conclusively. Furthermore, recent studies indicate fatigue is highly prevalent among 'long-COVID' patients. How morphometry in each group relate to work-related fatigue need to be investigated. Method: COVID survivors were MRI scanned two weeks after hospital discharge. We hypothesized, these survivors will demonstrate altered gray matter volume (GMV) and experience higher fatigue levels when compared to healthy controls, leading to stronger correlation of GMV with fatigue. Voxel-based morphometry was performed on T1-weighted MRI images between 46 survivors and 30 controls. Unpaired two-sample t-test and multiple linear regression were performed to observe group differences and correlation of fatigue with GMV. Results: The COVID group experienced significantly higher fatigue levels and GMV of this group was significantly higher within the Limbic System and Basal Ganglia when compared to healthy controls. Moreover, while a significant positive correlation was observed across the whole group between GMV and self-reported fatigue, COVID subjects showed stronger effects within the Posterior Cingulate, Precuneus and Superior Parietal Lobule. Conclusion: Brain regions with GMV alterations in our analysis align with both single case acute patient reports and current group level neuroimaging findings. We also newly report a stronger positive correlation of GMV with fatigue among COVID survivors within brain regions associated with fatigue, indicating a link between structural abnormality and brain function in this cohort.

8.
J Med Syst ; 46(4): 20, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35249179

RESUMO

Adoption of Artificial Intelligence (AI) algorithms into the clinical realm will depend on their inherent trustworthiness, which is built not only by robust validation studies but is also deeply linked to the explainability and interpretability of the algorithms. Most validation studies for medical imaging AI report the performance of algorithms on study-level labels and lay little emphasis on measuring the accuracy of explanations generated by these algorithms in the form of heat maps or bounding boxes, especially in true positive cases. We propose a new metric - Explainability Failure Ratio (EFR) - derived from Clinical Explainability Failure (CEF) to address this gap in AI evaluation. We define an Explainability Failure as a case where the classification generated by an AI algorithm matches with study-level ground truth but the explanation output generated by the algorithm is inadequate to explain the algorithm's output. We measured EFR for two algorithms that automatically detect consolidation on chest X-rays to determine the applicability of the metric and observed a lower EFR for the model that had lower sensitivity for identifying consolidation on chest X-rays, implying that the trustworthiness of a model should be determined not only by routine statistical metrics but also by novel 'clinically-oriented' models.


Assuntos
Algoritmos , Inteligência Artificial , Diagnóstico por Imagem , Humanos , Radiografia
9.
medRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845462

RESUMO

Background: Among systemic abnormalities caused by the novel coronavirus, little is known about the critical attack on the central nervous system (CNS). Few studies have shown cerebrovascular pathologies that indicate CNS involvement in acute patients. However, replication studies are necessary to verify if these effects persist in COVID-19 survivors more conclusively. Furthermore, recent studies indicate fatigue is highly prevalent among 'long-COVID' patients. How morphometry in each group relate to work-related fatigue need to be investigated. Method: COVID survivors were MRI scanned two weeks after hospital discharge. We hypothesized, these survivors will demonstrate altered gray matter volume (GMV) and experience higher fatigue levels when compared to healthy controls, leading to stronger correlation of GMV with fatigue. Voxel-based morphometry was performed on T1-weighted MRI images between 46 survivors and 30 controls. Unpaired two-sample t-test and multiple linear regression were performed to observe group differences and correlation of fatigue with GMV. Results: The COVID group experienced significantly higher fatigue levels and GMV of this group was significantly higher within the Limbic System and Basal Ganglia when compared to healthy controls. Moreover, while a significant positive correlation was observed across the whole group between GMV and self-reported fatigue, COVID subjects showed stronger effects within the Posterior Cingulate, Precuneus and Superior Parietal Lobule . Conclusion: Brain regions with GMV alterations in our analysis align with both single case acute patient reports and current group level neuroimaging findings. We also newly report a stronger positive correlation of GMV with fatigue among COVID survivors within brain regions associated with fatigue, indicating a link between structural abnormality and brain function in this cohort.

10.
J Magn Reson Imaging ; 55(3): 895-907, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34369633

RESUMO

BACKGROUND: Knee assessment with and without load using magnetic resonance imaging (MRI) can provide information on knee joint dynamics and improve the diagnosis of knee joint diseases. Performing such studies on a routine MRI-scanner require a load-exerting device during scanning. There is a need for more studies on developing loading devices and evaluating their clinical potential. PURPOSE: Design and develop a portable and easy-to-use axial loading device to evaluate the knee joint dynamics during the MRI study. STUDY TYPE: Prospective study. SUBJECTS: Nine healthy subjects. FIELD STRENGTH/SEQUENCE: A 0.25 T standing-open MRI and 3.0 T MRI. PD-T2 -weighted FSE, 3D-fast-spoiled-gradient-echo, FS-PD, and CartiGram sequences. ASSESSMENT: Design and development of loading device, calibration of loads, MR safety assessment (using projectile angular displacement, torque, and temperature tests). Scoring system for ease of doing. Qualitative (by radiologist) and quantitative (using structural similarity index measure [SSIM]) image-artifact assessment. Evaluation of repeatability, comparison with various standing stances load, and loading effect on knee MR parameters (tibiofemoral bone gap [TFBG], femoral cartilage thickness [FCT], tibial cartilage thickness [TCT], femoral cartilage T2 -value [FCT2], and tibia cartilage T2 -value [TCT2]). The relative percentage change (RPC) in parameters due to the device load was computed. STATISTICAL TEST: Pearson's correlation coefficient (r). RESULTS: The developed device is conditional-MR safe (details in the manuscript and supplementary materials), 15 × 15 × 45 cm3 dimension, and <3 kg. The ease of using the device was 4.9/5. The device introduced no visible image artifacts, and SSIM of 0.9889 ± 0.0153 was observed. The TFBG intraobserver variability (absolute difference) was <0.1 mm. Interobserver variability of all regions of interest was <0.1 mm. The load exerted by the device was close to the load during standing on both legs in 0.25 T scanner with r > 0.9. Loading resulted in RPC of 1.5%-11.0%, 7.9%-8.5%, and -1.5% to 13.0% in the TFBG, FCT, and TCT, respectively. FCT2 and TCT2 were reduced in range of 1.5-2.7 msec and 0.5-2.3 msec due to load. DATA CONCLUSION: The proposed device is conditionally MR safe, low cost (material cost < INR 6000), portable, and effective in loading the knee joint with up to 50% of body weight. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Cartilagem Articular , Cartilagem Articular/patologia , Humanos , Joelho/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos
11.
J Orthop Res ; 40(4): 779-790, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34057761

RESUMO

To develop a semi-automatic framework for quantitative analysis of biochemical properties and thickness of femur cartilage using magnetic resonance (MR) images and evaluate its potential for femur cartilage classification into asymptomatic (AS), early osteoarthritis (OA), and advanced OA groups. In this study, knee joint MRI data (fat suppressed-proton density-weighted and multi-echo T2-weighted images) of eight AS-volunteers (data acquired twice) and 34 OA patients including 20 early OA (16 Grade-I and 4 Grade-II), 14 advanced-OA (Grade-III) were acquired at 3.0T MR scanner. Modified Outerbridge classification criteria was performed for the clinical evaluation of data by an experienced radiologist. Cartilage segmentation, T2-mapping, 2D-WearMap generation, and subregion analysis were performed semi-automatically using in-house developed algorithms. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were computed for testing the reproducibility of T2 values. One-way analysis of variance with Tukey-Kramer post hoc test was performed for evaluating the differences among the groups. The performance of individual T2 and thickness, as well as their combination using logistic regression, were evaluated with receiver operating characteristics (ROC) curve analysis. The interscan agreement based on the ICC index was 0.95 and the CV was 2.45 ± 1.33%. T2 mean of values greater than 75th percentile showed sensitivity and specificity of 94.1% and 81.3% (AUC = 0.93, cut-off value = 47.9 ms) in differentiating AS volunteers versus OA group, while sensitivity and specificity of 90.0% and 81.3% (AUC = 0.90, cut-off value = 47.9 ms) in differentiating AS volunteers versus early OA groups, respectively. In the differentiation of early OA versus advanced-OA group, ROC results of combination (T2 and thickness) showed the highest sensitivity and specificity of 85.7%, and 70.0% (AUC = 0.79, cut-off value = 0.39) compared with individual T2 and thickness features, respectively. A computer-aided quantitative evaluation of femur cartilage degeneration showed promising results and can be used to assist clinicians in diagnosing OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Humanos , Articulação do Joelho , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Reprodutibilidade dos Testes
12.
Sci Rep ; 11(1): 23210, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853342

RESUMO

SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.


Assuntos
COVID-19/complicações , Aprendizado Profundo , Sistemas Inteligentes , Processamento de Imagem Assistida por Computador/métodos , Pneumonia/diagnóstico , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , COVID-19/virologia , Humanos , Incidência , Índia/epidemiologia , Redes Neurais de Computação , Pneumonia/diagnóstico por imagem , Pneumonia/epidemiologia , Pneumonia/virologia , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação
13.
Clin Neuroradiol ; 31(4): 953-967, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34297137

RESUMO

Alzheimer's disease (AD) is a heterogeneous progressive neurocognitive disorder. Although different neuroimaging modalities have been used for the identification of early diagnostic and prognostic factors of AD, there is no consolidated view of the findings from the literature. Here, we aim to provide a comprehensive account of different neural correlates of cognitive dysfunction via magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) (resting-state and task-related), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) modalities across the cognitive groups i.e., normal cognition, mild cognitive impairment (MCI), and AD. A total of 46 meta-analyses met the inclusion criteria, including relevance to MCI, and/or AD along with neuroimaging modality used with quantitative and/or functional data. Volumetric MRI identified early anatomical changes involving transentorhinal cortex, Brodmann area 28, followed by the hippocampus, which differentiated early AD from healthy subjects. A consistent pattern of disruption in the bilateral precuneus along with the medial temporal lobe and limbic system was observed in fMRI, while DTI substantiated the observed atrophic alterations in the corpus callosum among MCI and AD cases. Default mode network hypoconnectivity in bilateral precuneus (PCu)/posterior cingulate cortices (PCC) and hypometabolism/hypoperfusion in inferior parietal lobules and left PCC/PCu was evident. Molecular imaging revealed variable metabolite concentrations in PCC. In conclusion, the use of different neuroimaging modalities together may lead to identification of an early diagnostic and/or prognostic biomarker for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Neuroimagem
14.
J Transl Med ; 19(1): 310, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281578

RESUMO

BACKGROUND: Appropriate structural and material properties are essential for finite-element-modeling (FEM). In knee FEM, structural information could extract through 3D-imaging, but the individual subject's tissue material properties are inaccessible. PURPOSE: The current study's purpose was to develop a methodology to estimate the subject-specific stiffness of the tibiofemoral joint using finite-element-analysis (FEA) and MRI data of knee joint with and without load. METHODS: In this study, six Magnetic Resonance Imaging (MRI) datasets were acquired from 3 healthy volunteers with axially loaded and unloaded knee joint. The strain was computed from the tibiofemoral bone gap difference (ΔmBGFT) using the knee MR images with and without load. The knee FEM study was conducted using a subject-specific knee joint 3D-model and various soft-tissue stiffness values (1 to 50 MPa) to develop subject-specific stiffness versus strain models. RESULTS: Less than 1.02% absolute convergence error was observed during the simulation. Subject-specific combined stiffness of weight-bearing tibiofemoral soft-tissue was estimated with mean values as 2.40 ± 0.17 MPa. Intra-subject variability has been observed during the repeat scan in 3 subjects as 0.27, 0.12, and 0.15 MPa, respectively. All subject-specific stiffness-strain relationship data was fitted well with power function (R2 = 0.997). CONCLUSION: The current study proposed a generalized mathematical model and a methodology to estimate subject-specific stiffness of the tibiofemoral joint for FEM analysis. Such a method might enhance the efficacy of FEM in implant design optimization and biomechanics for subject-specific studies. Trial registration The institutional ethics committee (IEC), Indian Institute of Technology, Delhi, India, approved the study on 20th September 2017, with reference number P-019; it was a pilot study, no clinical trail registration was recommended.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Índia , Articulação do Joelho/diagnóstico por imagem , Projetos Piloto
15.
PLoS One ; 16(2): e0247115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596239

RESUMO

The rapid emergence of coronavirus disease 2019 (COVID-19) as a global pandemic affecting millions of individuals globally has necessitated sensitive and high-throughput approaches for the diagnosis, surveillance, and determining the genetic epidemiology of SARS-CoV-2. In the present study, we used the COVIDSeq protocol, which involves multiplex-PCR, barcoding, and sequencing of samples for high-throughput detection and deciphering the genetic epidemiology of SARS-CoV-2. We used the approach on 752 clinical samples in duplicates, amounting to a total of 1536 samples which could be sequenced on a single S4 sequencing flow cell on NovaSeq 6000. Our analysis suggests a high concordance between technical duplicates and a high concordance of detection of SARS-CoV-2 between the COVIDSeq as well as RT-PCR approaches. An in-depth analysis revealed a total of six samples in which COVIDSeq detected SARS-CoV-2 in high confidence which were negative in RT-PCR. Additionally, the assay could detect SARS-CoV-2 in 21 samples and 16 samples which were classified inconclusive and pan-sarbeco positive respectively suggesting that COVIDSeq could be used as a confirmatory test. The sequencing approach also enabled insights into the evolution and genetic epidemiology of the SARS-CoV-2 samples. The samples were classified into a total of 3 clades. This study reports two lineages B.1.112 and B.1.99 for the first time in India. This study also revealed 1,143 unique single nucleotide variants and added a total of 73 novel variants identified for the first time. To the best of our knowledge, this is the first report of the COVIDSeq approach for detection and genetic epidemiology of SARS-CoV-2. Our analysis suggests that COVIDSeq could be a potential high sensitivity assay for the detection of SARS-CoV-2, with an additional advantage of enabling the genetic epidemiology of SARS-CoV-2.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , COVID-19/genética , Genoma Viral/genética , Humanos , Índia/epidemiologia , Epidemiologia Molecular/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade
16.
Int J Comput Assist Radiol Surg ; 15(3): 403-413, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927688

RESUMO

PURPOSE: The quantitative analysis of weight-bearing articular cartilage superficial to subchondral abnormality is important in osteoarthritis (OA) progression studies. The current study aimed to address the challenges of a semi-automatic segmentation of tibiofemoral cartilage in MR images of OA patient with and without subchondral bone abnormalities (SBA). METHODS: In this study, knee MRI data [fat-suppressed proton density-weighted, multi-echo T2-weighted (CartiGram) images] of 29 OA patients, acquired at 3.0T MR scanner, were retrospectively collected. Out of 29 data, 9 had SBA in femur bone. Initially, a semi-automatic femur cartilage segmentation based on radial intensity search approach by Akhtar et al. was implemented in-house. This algorithm was considered as the radial-search method for further comparison. In this current study, the reported radial-search (RS)-based semi-automatic cartilage segmentation method was modified using thresholding, connected component labelling, convex-hull operation and spline-based curve fitting for the improved segmentation of tibiofemoral cartilage. Cartilage was manually segmented by two experienced radiologists, and inter-reader variability was estimated using coefficient of variation (CV). The segmentation results were validated using dice coefficient (DC), Jaccard coefficient (JC) and sensitivity index measurements. RESULTS: DC values for segmented femur cartilage in patients with SBA were 64.6 ± 7.8% and 81.4 ± 2.8% using reported RS method and modified radial-search method, respectively. DC values for segmented femur cartilage in patients without SBA were 82.5 ± 4.5% and 84.8 ± 2.0% using RS method and modified radial method, respectively. Similarly, DC values for tibial cartilage in all OA patients were 80.4 ± 1.6% and 81.9 ± 2.4% using RS method and modified radial method, respectively. Similar segmentation results were also obtained from the T2-weighted images. Inter-reader variability result based on CV in femur cartilage was 3.40 ± 2.12% (without SBA) and 4.18 ± 3.18% (with SBA). CONCLUSION: In the current study, a semi-automated segmentation of tibiofemoral cartilage was presented. Modified radial-search approach can successfully segment tibiofemoral cartilage, and the results were tested and validated on knee MRI data of OA patients with and without SBA.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Adulto , Algoritmos , Feminino , Fêmur/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Tíbia/diagnóstico por imagem , Adulto Jovem
17.
Acad Radiol ; 27(1): 132-135, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818381

RESUMO

There is a plethora of Artificial Intelligence (AI) tools that are being developed around the world aiming at either speeding up or improving the accuracy of radiologists. It is essential for radiologists to work with the developers of such algorithms to determine true clinical utility and risks associated with these algorithms. We present a framework, called an Algorithmic Audit, for working with the developers of such algorithms to test and improve the performance of the algorithms. The framework includes concepts of true independent validation on data that the algorithm has not seen before, curating datasets for such testing, deep examination of false positives and false negatives (to examine implications of such errors) and real-world deployment and testing of algorithms.


Assuntos
Inteligência Artificial , Radiologia , Algoritmos , Humanos , Radiografia , Radiologistas
18.
Acad Radiol ; 27(1): 88-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31623996

RESUMO

RATIONALE AND OBJECTIVES: To explain predictions of a deep residual convolutional network for characterization of lung nodule by analyzing heat maps. MATERIALS AND METHODS: A 20-layer deep residual CNN was trained on 1245 Chest CTs from National Lung Screening Trial (NLST) trial to predict the malignancy risk of a nodule. We used occlusion to systematically block regions of a nodule and map drops in malignancy risk score to generate clinical attribution heatmaps on 103 nodules from Lung Image Database Consortium image collection and Image Database Resource Initiative (LIDC-IDRI) dataset, which were analyzed by a thoracic radiologist. The features were described as heat inside nodule -bright areas inside nodule, peripheral heat continuous/interrupted bright areas along nodule contours, heat in adjacent plane -brightness in scan planes juxtaposed with the nodule, satellite heat - a smaller bright spot in proximity to nodule in the same scan plane, heat map larger than nodule bright areas corresponding to the shape of the nodule seen outside the nodule margins and heat in calcification. RESULTS: These six features were assigned binary values. This feature vector was fedinto a standard J48 decision tree with 10-fold cross-validation, which gave an 85 % weighted classification accuracy with a 77.8% True Positive (TP) rate, 8% False Positive (FP) rate for benign cases and 91.8% TP and 22.2% FP rates for malignant cases. Heat Inside nodule was more frequently observed in nodules classified as malignant whereas peripheral heat, heat in adjacent plane, and satellite heat were more commonly seen in nodules classified as benign. CONCLUSION: We discuss the potential ability of a radiologist to visually parse the deep learning algorithm generated "heat map" to identify features aiding classification.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador , Nódulo Pulmonar Solitário/diagnóstico por imagem
19.
AJR Am J Roentgenol ; 213(4): 886-888, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31166758

RESUMO

OBJECTIVE. Although extensive attention has been focused on the enormous potential of artificial intelligence (AI) technology, a major question remains: how should this fundamentally new technology be regulated? The purpose of this article is to provide an overview of the pathways developed by the U.S. Food and Drug Administration to regulate the incorporation of AI in medical imaging. CONCLUSION. AI is the new wave of innovation in health care. The technology holds promising applications to revolutionize all aspects of medicine.


Assuntos
Inteligência Artificial/legislação & jurisprudência , Diagnóstico por Imagem , United States Food and Drug Administration , Algoritmos , Competência Clínica , Humanos , Segurança do Paciente , Estados Unidos
20.
Lancet ; 392(10162): 2388-2396, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318264

RESUMO

BACKGROUND: Non-contrast head CT scan is the current standard for initial imaging of patients with head trauma or stroke symptoms. We aimed to develop and validate a set of deep learning algorithms for automated detection of the following key findings from these scans: intracranial haemorrhage and its types (ie, intraparenchymal, intraventricular, subdural, extradural, and subarachnoid); calvarial fractures; midline shift; and mass effect. METHODS: We retrospectively collected a dataset containing 313 318 head CT scans together with their clinical reports from around 20 centres in India between Jan 1, 2011, and June 1, 2017. A randomly selected part of this dataset (Qure25k dataset) was used for validation and the rest was used to develop algorithms. An additional validation dataset (CQ500 dataset) was collected in two batches from centres that were different from those used for the development and Qure25k datasets. We excluded postoperative scans and scans of patients younger than 7 years. The original clinical radiology report and consensus of three independent radiologists were considered as gold standard for the Qure25k and CQ500 datasets, respectively. Areas under the receiver operating characteristic curves (AUCs) were primarily used to assess the algorithms. FINDINGS: The Qure25k dataset contained 21 095 scans (mean age 43 years; 9030 [43%] female patients), and the CQ500 dataset consisted of 214 scans in the first batch (mean age 43 years; 94 [44%] female patients) and 277 scans in the second batch (mean age 52 years; 84 [30%] female patients). On the Qure25k dataset, the algorithms achieved an AUC of 0·92 (95% CI 0·91-0·93) for detecting intracranial haemorrhage (0·90 [0·89-0·91] for intraparenchymal, 0·96 [0·94-0·97] for intraventricular, 0·92 [0·90-0·93] for subdural, 0·93 [0·91-0·95] for extradural, and 0·90 [0·89-0·92] for subarachnoid). On the CQ500 dataset, AUC was 0·94 (0·92-0·97) for intracranial haemorrhage (0·95 [0·93-0·98], 0·93 [0·87-1·00], 0·95 [0·91-0·99], 0·97 [0·91-1·00], and 0·96 [0·92-0·99], respectively). AUCs on the Qure25k dataset were 0·92 (0·91-0·94) for calvarial fractures, 0·93 (0·91-0·94) for midline shift, and 0·86 (0·85-0·87) for mass effect, while AUCs on the CQ500 dataset were 0·96 (0·92-1·00), 0·97 (0·94-1·00), and 0·92 (0·89-0·95), respectively. INTERPRETATION: Our results show that deep learning algorithms can accurately identify head CT scan abnormalities requiring urgent attention, opening up the possibility to use these algorithms to automate the triage process. FUNDING: Qure.ai.


Assuntos
Algoritmos , Lesões Encefálicas/diagnóstico por imagem , Aprendizado Profundo , Hemorragias Intracranianas/diagnóstico por imagem , Fraturas Cranianas/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Triagem/métodos , Conjuntos de Dados como Assunto , Cabeça/diagnóstico por imagem , Humanos , Estudos Retrospectivos , Índices de Gravidade do Trauma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...