Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(5): e0251664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014964

RESUMO

Exposure to ultrafine combustion aerosols such as particulate matter (PM) from residential woodburning, forest fires, cigarette smoke, and traffic emission have been linked to adverse health outcomes. Excitation-emission matrix (EEM) spectroscopy presents a sensitive and cost-effective alternative for analysis of PM organic fraction. However, as with other analytical chemistry methods, the miniaturization is hindered by a solvent extraction step and a need for benchtop instrumentation. We present a methodology for collecting and in-situ analysis of airborne nanoparticles that eliminates labor-intensive sample preparation and miniaturizes the detection platform. Nanoparticles are electrostatically collected onto a transparent substrate coated with solid-phase (SP) solvent-polydimethylsiloxane (PDMS). The PM organic fraction is extracted into PDMS and analyzed in-situ, thus avoiding liquid-phase extraction. In the SP-EEM analysis, we evaluated external and internal excitation schemes. Internal excitation shows the lowest scattering interference but leads to signal masking from PDMS fluorescence for λ<250nm. The external excitation EEM spectra are dependent on the excitation light incident angle; ranges of 30-40° and 55-65° show the best results. SP-EEM spectra of woodsmoke and cigarette smoke samples are in good agreement with the EEM spectra of liquid-phase extracts. The SP-EEM technique can be used to develop wearable sensors for exposure assessments and environmental monitoring.


Assuntos
Material Particulado/análise , Poluentes Químicos da Água/análise , Aerossóis , Espectrometria de Fluorescência
2.
Environ Sci Technol ; 54(13): 8198-8209, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479734

RESUMO

Analysis of particulate matter (PM) is important for the assessment of human exposures to potentially harmful agents, notably combustion-generated PM. Specifically, polycyclic aromatic hydrocarbons (PAHs) found in ultrafine PM have been linked to cardiovascular diseases and carcinogenic and mutagenic effects. In this study, we quantify the presence and concentrations of PAHs with lower molecular weight (LMW, 126 < MW < 202) and higher molecular weight (HMW, 226 < MW < 302), i.e., smaller and larger than Pyrene, in combustion-generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy. Laboratory combustion PM samples were generated in a laminar diffusion inverted gravity flame reactor (IGFR) operated on ethylene and ethane. Fuel dilution by Ar in 0% to 90% range controlled the flame temperature. The colder flames result in lower PM yields however, the PM PAH content increases significantly. Temperature thresholds for PM transition from low to high organic carbon content were characterized based on the maximum flame temperature (Tmax,c ∼ 1791 to 1857 K) and the highest soot luminosity region temperature (T*c ∼ 1600 to 1650K). Principal component regression (PCR) analysis of the EEM spectra of IGFR samples correlates to GCMS data with R2 = 0.988 for LMW and 0.998 for HMW PAHs. PCR-EEM analysis trained on the IGFR samples was applied to PM samples from woodsmoke and diesel exhaust, the model accurately predicts HMW PAH concentrations with R2 = 0.976 and overestimates LMW PAHs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Carbono , Monitoramento Ambiental , Humanos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA