Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38197444

RESUMO

Chemical dynamics Simulation studies on benzene dimer (Bz2) and benzene-hexachlorobenzene (Bz-HCB) as performed in the past suggest that the coupling between the monomeric (intramolecular) vibrational modes and modes generated due to the association of two monomers (intermolecular) has to be neither strong nor weak for a fast dissociation of the complex. To find the optimum coupling, four complexes are taken into consideration in this work, namely, benzene-monofluorobenzene, benzene-monochlorobenzene, benzene-trifluorobenzene (Bz-TFB), and benzene-trichlorobenzene. Bz-TFB has the highest rate of dissociation among all seven complexes, including Bz2, Bz-HCB, and Bz-HFB (HFB stands for hexafluorobenzene). The set of vibrational frequencies of Bz-TFB is mainly the reason for this fast dissociation. The mass of chlorine in Bz-HCB is optimized to match its vibrational frequencies similar to those of Bz-TFB, and the dissociation of Bz-HCB becomes faster. The power spectrum of Bz-TFB, Bz-HCB, and Bz-HCB with the modified mass of chlorine is also computed to understand the extent of the said coupling in these complexes.

2.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184007

RESUMO

The application of Machine Learning (ML) algorithms in chemical sciences, particularly computational chemistry, is a vastly emerging area of modern research. While many applications of ML techniques have already been in place to use ML based potential energies in various dynamical simulation studies, specific applications are also being successfully tested. In this work, the ML algorithms are tested to calculate the unimolecular dissociation time of benzene-hexachlorobenzene, benzene-trichlorobenzene, and benzene-monochlorobenzene complexes. Three ML algorithms, namely, Decision-Tree-Regression (DTR), Multi-Layer Perceptron, and Support Vector Regression are considered. The algorithms are trained with simulated dissociation times as functions (attributes) of complexes' intramolecular and intermolecular vibrational energies. The simulation data are used for an excitation temperature of 1500 K. Considering that the converged result is obtained with 1500 trajectories, an ML algorithm trained with 700 simulation points provides the same dissociation rate constant within statistical uncertainty as obtained from the converged 1500 trajectory result. The DTR algorithm is also used to predict 1000 K simulation results using 1500 K simulation data.

3.
Phys Chem Chem Phys ; 24(38): 23825-23839, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36164966

RESUMO

The role of the environment (N2 molecules) on the association followed by the ensuing dissociation reaction of benzene + benzene system is studied here with the help of a new code setup. Chemical dynamics simulations are performed to investigate this reaction in vacuum as well as in a bath of 1000 N2 molecules, equilibrated at 300 K. Bath densities of 20 and 324 kg m-3 are considered with a few results from the latter density. The simulations are performed at three different excitation temperatures of benzene, namely, 1000, 1500, and 2000 K, with an impact parameter range of 0-12 Å for both vacuum and bath models. Higher association probabilities and hence, higher temperature dependent association rate constants are obtained in the condensed phase. In the condensed phase, when a trajectory takes a longer time for the monomers to associate, the associated complex is formed with a longer lifetime and provides a lower rate of ensuing dissociation. Higher association rate and lower dissociation rate in condensed phase dynamics are due to the energy transfer process. Hence, the energy transfer phenomenon plays a decisive role in the association/dissociation dynamics, which is completely ignored in the same reaction when studied in vacuum.

4.
J Phys Chem A ; 126(2): 259-271, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34994202

RESUMO

The intramolecular vibrational energy redistribution (IVR) dynamics during unimolecular dissociation of aromatic trimers at high temperatures is the primary interest of this study. Chemical dynamics simulations are performed for the unimolecular dissociation of benzene-hexafluorobenzene-benzene (Bz-HFB-Bz) and benzene trimer (Bz-trimer) complexes at a temperature range of 1000-2000 K. Partial dissociation of both the complexes is observed, which leads to a dimer and a monomer in the dynamics. However, the probability of such dissociation was found much lower in the case of the Bz-trimer, which further decreases with the increase of temperature. The rate of partial dissociation of Bz-HFB-Bz is faster at 1500, 1800, and 2000 K, whereas the rate of complete dissociation of the Bz-trimer is significantly faster than Bz-HFB-Bz at all temperatures. This is just the opposite of the corresponding dimer's dissociation, where benzene-hexafluorobenzene (Bz-HFB) dissociates at a faster rate than the benzene dimer (Bz-dimer). Thus, the dissociation dynamics of the trimer is different than that of the dimer. Simulations with excited intramolecular and intermolecular modes of the trimer complexes reveal that energy flows from intermolecular to intramolecular modes of Bz-HFB-Bz more freely than the Bz-trimer, and the dissociation process becomes slower for the former. Calculated activation energies for both types of dynamics are much lower than the corresponding binding energies, which may be due to the anharmonicity. The Arrhenius equation with an anharmonic correction factor is considered to recalculate the activation energy and pre-exponential factor.

5.
J Phys Chem A ; 125(27): 5870-5877, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34192876

RESUMO

The unimolecular dissociation dynamics of the C6H6-C6Cl6 (Bz-HCB) complex is studied with initial excitation of all vibrational modes for a temperature range of 1000-2000 K and with mode-specific excitations at 1500 K. The results are compared with those of the C6H6-C6F6 [Bz- HFB] complex. When all modes of Bz-HCB are initially excited, the rate of dissociation is slower with respect to Bz-HFB. However, the rate of dissociation is faster when simulations with nonrandom excitation of the specific vibrational modes are performed. The rate of dissociation of Bz-HCB is found to become slower when a few intramolecular modes are excited along with all inter-fragment modes compared to the simulation when only inter-fragment modes of the same complex are excited. Such an energy-transfer dynamics is absent if both intramolecular and inter-fragment modes are not initially excited. Thus, a "stimulated" resonance energy-transfer dynamics is observed in Bz-HCB dissociation dynamics.

6.
J Phys Chem A ; 123(50): 10663-10675, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31755713

RESUMO

The unimolecular dissociation of a benzene-hexafluorobenzene complex at 1000, 1500, and 2000 K is studied inside a bath of 1000 N2 molecules kept at 300 K using chemical dynamics simulation. Three bath densities of 20, 324, and 750 kg/m3 are considered. The dissociation dynamics of the complex at a 20 kg/m3 bath density is found to be similar to that in the gas phase, whereas the dynamics is drastically different at higher bath densities. The microcanonical/canonical dissociation rate constants for the three bath densities are calculated and fitted to the Arrhenius equation. The activation energies are found to be similar to the gas-phase one. However, the pre-exponential factor is lower and decreases with the increase in bath density. The vibrational degree of freedom of the complex more effectively participates in the collisional energy transfer to the N2 bath, whereas the translational and rotational degrees of freedom of N2 receive the transferred energy. The energy transfer efficiency increases with the increase in bath density. The time scale of the energy transfer pathway is more than that of the dissociation pathway, and negligible direct dissociation of the complex is observed from the simulation at the highest bath density.

7.
J Phys Chem A ; 123(24): 5019-5026, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31145623

RESUMO

Chemical dynamics simulations are performed to study the association of benzene (Bz) and hexafluorobenzene (HFB) followed by the ensuing dissociation of the Bz-HFB complex. The calculations are done for 1000, 1500, and 2000 K with an impact parameter ( b) range of 0-10 Å at each temperature. Almost no complexes are observed to form at b = 8 and 10 Å. Following three different methods of calculation of the temperature-dependent association rate constant kasso( T), the values obtained are 1.67 × 10-10, 1.86 × 10-10, and 2.05 × 10-10 cm3/molecule·s with a standard deviation of approximately 0.1 × 10-10 cm3/molecule·s for T = 1500 K. Among those values of kasso( T), the middle one is obtained by considering a relative translational energy of 3 RT/2 at T = 1500 K, and the same is followed to calculate kasso( T) at 1000 and 2000 K. The Arrhenius parameters, using the kasso( T) values at three temperatures, are 0.203 × 10-10 cm3/molecule·s for the pre-exponential factor and -5.79 kcal/mol for the activation energy. The absolute value of the latter is similar to the Bz + HFB association energy of 5.93 kcal/mol. The ensuing dissociation dynamics of the complex is significantly different from the unimolecular dissociation dynamics, and an exponential function fits the N( t - t0)/ N( t0) curves comparatively well. The ensuing dissociation is also observed to be independent of time for a statistically large sample size.

8.
J Phys Chem A ; 123(13): 2517-2526, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30848910

RESUMO

Chemical dynamics simulations are performed to study the unimolecular dissociation of the benzene (Bz)-hexafluorobenzene (HFB) complex at five different temperatures ranging from 1000 to 2000 K, and the results are compared with that of the Bz dimer at common simulation temperatures. Bz-HFB, in comparison with Bz dimer, possesses a much attractive intermolecular interaction, a very different equilibrium geometry, and a lower average quantum vibrational excitation energy at a given temperature. Six low-frequency modes of Bz-HFB are formed by Bz + HFB association which are weakly coupled with the vibrational modes of Bz and HFB. However, this coupling is found much stronger in Bz-HFB compared to the same in the Bz dimer. The simulations are done with very good potential energy parameters taken from the literature. Considering the canonical (TST) model, the unimolecular dissociation rate constant at each temperature is calculated and fitted to the Arrhenius equation. An activation energy of 5.0 kcal/mol and a pre-exponential factor of 2.39 × 1012 s-1 are obtained, which are of expected magnitudes. The responsible vibrational mode for dissociation is identified by performing normal-mode analysis. Simulations with random excitations of high-frequency Bz and HFB modes and low-frequency inter-Bz-HFB vibrational modes of the Bz-HFB complex are also performed. The intramolecular vibrational energy redistribution (IVR) time and the unimolecular dissociation rate constants are calculated from these simulations. The latter shows good agreement with the same obtained from simulation with random excitation of all vibrational modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...