Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Rep ; 13(1): 14787, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684280

RESUMO

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.


Assuntos
Antílopes , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Ovinos , Soroconversão , Peste dos Pequenos Ruminantes/diagnóstico , Anticorpos , Animais Selvagens , Búfalos , Camelus , Cabras
2.
Viruses ; 14(4)2022 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-35458564

RESUMO

Animal diseases such as peste des petits ruminants (PPR) and foot and mouth disease (FMD) cause significant economic losses in endemic countries and fast, accurate in-field diagnostics would assist with surveillance and outbreak control. The detection of these pathogens is usually performed at reference laboratories, tested using assays that are recommended by The World Organisation for Animal Health (OIE), leading to delays in pathogen detection. This study seeks to demonstrate a proof-of-concept approach for a molecular diagnostic assay that is compatible with material direct from nasal swab sampling, without the need for a prior nucleic acid extraction step, that could potentially be applied at pen-side for both PPR and FMD. The use of such a rapid, low-cost assay without the need for a cold chain could permit testing capacity to be established in remote, resource limited areas and support the surveillance activities necessary to meet the goal of eradication of PPR by 2030. Two individual assays were developed that detect > 99% of PPR and FMD sequences available in GenBank, demonstrating pan-serotype FMD and pan-lineage PPR assays. The ability for the BioGene XF reagent that was used in this study to lyse FMD and PPR viruses and amplify their nucleic acids in the presence of unprocessed nasal swab eluate was evaluated. The reagent was shown to be capable of detecting the viral RNA present in nasal swabs collected from naïve and infected target animals. A study was performed comparing the relative specificity and sensitivity of the new assays to the reference assays. The study used nasal swabs collected from animals before and after infection (12 cattle infected with FMDV and 5 goats infected with PPRV) and both PPR and FMD viral RNA were successfully detected two to four days post-infection in all animals using either the XF or reference assay reagents. These data suggest that the assays are at least as sensitive as the reference assays and support the need for further studies in a field setting.


Assuntos
Febre Aftosa , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Bovinos , Febre Aftosa/diagnóstico , Cabras , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Viral/genética
3.
Transbound Emerg Dis ; 69(5): 3041-3046, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331827

RESUMO

Livestock markets are considered vital parts of the agricultural economy, particularly in developing countries where livestock keeping contributes to both food security and economic stability. Animals from diverse sources are moved to markets, they mix while they are there and are subsequently redistributed over wide geographic areas. Consequently, markets provide an opportunity for targeted surveillance for circulating pathogens. This study investigated the use of environmental sampling at a live goat market in Nepal for the detection of foot-and-mouth disease virus (FMDV) and peste des petits ruminants virus (PPRV), both of which are endemic. Five visits to the market were carried out between November 2016 and April 2018, with FMDV RNA detected on four visits and PPRV RNA detected on all five visits. Overall, 4.1% of samples (nine out of 217) were positive for FMDV RNA and 60.8% (132 out of 217) were positive for PPRV RNA, though the proportion of positive samples varied amongst visits. These results demonstrate that non-invasive, environmental sampling methods have the potential to be used to detect circulation of high priority livestock diseases at a live animal market and, hence, to contribute to their surveillance and control.


Assuntos
Vírus da Febre Aftosa , Doenças das Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Vírus da Febre Aftosa/genética , Doenças das Cabras/diagnóstico , Doenças das Cabras/epidemiologia , Cabras , Nepal/epidemiologia , Peste dos Pequenos Ruminantes/diagnóstico , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Viral/genética
4.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960642

RESUMO

Peste des petits ruminants (PPR) is an acute, contagious viral disease of small ruminants, goats and sheep. The Democratic Republic of the Congo (DRC) was a PPR-free country until 2007, although in 2006, scare alerts were received from the east and the southwest of the country, reporting repeated mortalities, specifically in goats. In 2008, PPR outbreaks were seen in several villages in the west, leading to structured veterinary field operations. Blood, swabs and pathological specimens consisting of tissues from lungs, spleens, lymph nodes, kidneys, livers and hearts were ethically collected from clinically infected and/or dead animals, as appropriate, in 35 districts. Epidemiological information relating to major risk factors and socio-economic impact was progressively collected, revealing the deaths of 744,527 goats, which converted to a trade value of USD 35,674,600. Samples from infected and dead animals were routinely analyzed by the Central Veterinary Laboratory at Kinshasa for diagnosis, and after official declaration of PPR outbreaks by the FAO in July 2012, selected tissue samples were sent to The Pirbright Institute, United Kingdom, for genotyping. As a result of surveys undertaken between 2008 and 2012, PPR virus (PPRV)-specific antibodies were detected in 25 locations out of 33 tested (75.7%); PPRV nucleic acid was detected in 25 locations out of 35 (71.4%); and a typical clinical picture of PPR was observed in 23 locations out of 35 (65.7%). Analysis of the partial and full genome sequences of PPR viruses (PPRVs) obtained from lymphoid tissues of dead goats collected in Tshela in the DRC in 2012 confirmed the circulation of lineage IV PPRV, showing the highest homology (99.6-100%) with the viruses circulating in the neighboring countries of Gabon, in the Aboumi outbreak in 2011, and Nigeria (99.3% homology) in 2013, although recent outbreaks in 2016 and 2018 in the western part of the DRC that borders with East Africa demonstrated circulation of lineage II and lineage III PPRV.


Assuntos
Surtos de Doenças/veterinária , Genoma Viral/genética , Doenças das Cabras/epidemiologia , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Doenças dos Ovinos/epidemiologia , Animais , República Democrática do Congo/epidemiologia , Doenças das Cabras/virologia , Cabras , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Filogenia , Estudos Retrospectivos , Ruminantes , Ovinos , Doenças dos Ovinos/virologia
5.
Viruses ; 13(11)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34834951

RESUMO

Understanding the evolution of viral pathogens is critical to being able to define how viruses emerge within different landscapes. Host susceptibility, which is spread between different species and is a contributing factor to the subsequent epidemiology of a disease, is defined by virus detection and subsequent characterization. Peste des petits ruminants virus is a plague of small ruminant species that is a considerable burden to the development of sustainable agriculture across Africa and much of Asia. The virus has also had a significant impact on populations of endangered species in recent years, highlighting its significance as a pathogen of high concern across different regions of the globe. Here, we have re-evaluated the molecular evolution of this virus using novel genetic data to try and further resolve the molecular epidemiology of this disease. Viral isolates are genetically characterized into four lineages (I-IV), and the historic origin of these lineages is of considerable interest to the molecular evolution of the virus. Our re-evaluation of viral emergence using novel genome sequences has demonstrated that lineages I, II and IV likely originated in West Africa, in Senegal (I) and Nigeria (II and IV). Lineage III sequences predicted emergence in either East Africa (Ethiopia) or in the Arabian Peninsula (Oman and/or the United Arab Emirates), with a paucity of data precluding a more refined interpretation. Continual refinements of evolutionary emergence, following the generation of new data, is key to both understanding viral evolution from a historic perspective and informing on the ongoing genetic emergence of this virus.


Assuntos
Evolução Molecular , Genes Virais , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/genética , África Oriental/epidemiologia , África Ocidental/epidemiologia , Animais , Ásia/epidemiologia , Surtos de Doenças , Etiópia/epidemiologia , Genoma Viral , Doenças das Cabras/virologia , Cabras/virologia , Epidemiologia Molecular , Filogenia , Ruminantes/virologia , Senegal/epidemiologia , Análise de Sequência de DNA , Emirados Árabes Unidos/epidemiologia , Sequenciamento Completo do Genoma
6.
Viruses ; 13(11)2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34835126

RESUMO

Across Africa, the Middle East, and Asia, peste des petits ruminants virus (PPRV) places a huge disease burden on agriculture, affecting, in particular, small ruminant production. The recent PPR outbreaks in Northern Africa, the European part of Turkey, and Bulgaria represent a significant threat to mainland Europe, as a source of disease. Although two safe and efficacious live attenuated vaccines (Sungri/96 and Nigeria/75/1) are available for the control of PPR, current serological tests do not enable the differentiation between naturally infected and vaccinated animals (DIVA). The vaccinated animals develop a full range of immune responses to viral proteins and, therefore, cannot be distinguished serologically from those that have recovered from a natural infection. This poses a serious problem for the post-vaccinal sero-surveillance during the ongoing PPR eradication program. Furthermore, during the latter stages of any eradication program, vaccination is only possible if the vaccine used is fully DIVA compliant. Using reverse genetics, we have developed two live attenuated PPR DIVA vaccines (Sungri/96 DIVA and Nigeria/75/1 DIVA), in which the C-terminal variable region of the PPRV N-protein has been replaced with dolphin morbillivirus (DMV). As a proof of principle, both the DIVA vaccines were evaluated in goats in pilot studies for safety and efficacy, and all the animals were clinically protected against the intranasal virulent virus challenge, similar to the parent vaccines. Furthermore, it is possible to differentiate between infected animals and vaccinated animals using two newly developed ELISAs. Therefore, these DIVA vaccines and associated tests can facilitate the sero-monitoring process and speed up the implementation of global PPR eradication through vaccination.


Assuntos
Doenças dos Animais , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ruminantes/virologia , Vacinação/veterinária , Vacinas Virais/imunologia , Doenças dos Animais/imunologia , Doenças dos Animais/prevenção & controle , Doenças dos Animais/virologia , Animais , Peste dos Pequenos Ruminantes/imunologia , Peste dos Pequenos Ruminantes/prevenção & controle , Peste dos Pequenos Ruminantes/virologia
7.
Animals (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34827902

RESUMO

Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants caused by PPR virus (PPRV). PPR is endemic in Asia, the Middle East and across large areas of Africa and is currently targeted for global eradication by 2030. The virus exists as four different lineages that are usually limited to specific geographical areas. However, recent reports of spread of PPRV, in particular of lineage IV viruses to infection-free countries and previously PPR endemic areas are noteworthy. A rapid and accurate laboratory diagnosis and reports on its epidemiological linkage for virus spread play a major role in the effective control and eradication of the disease. Currently, molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) are usually used for diagnosis of PPR while the sequencing of part of the nucleocapsid gene is usually carried out for the viral lineage identification. However, it is difficult to diagnose and sequence the genetic material if the animal excreted a low level of virus at the initial stage of infection or if the PPRV is degraded during the long-distance transportation of samples to the reference laboratories. This study describes the development of a novel nested RT-PCR assay for the detection of the PPRV nucleic acid by targeting the N-protein gene, compares the performance of the assay with the existing conventional RT-PCR and also provides good-quality DNA suitable for sequencing in order to identify circulating lineages. The assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. This assay provides a solution with an easy, accurate, rapid and cost-effective PPR diagnostic and partial genome sequencing for use in resource-limited settings.

8.
Animals (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679994

RESUMO

Peste des petits ruminants virus (PPRV) causes a highly devastating disease of sheep and goats that threatens food security, small ruminant production and susceptible endangered wild ruminants. With policy directed towards achieving global PPR eradication, the establishment of cost-effective genomic surveillance tools is critical where PPR is endemic. Genomic data can provide sufficient in-depth information to identify the pockets of endemicity responsible for PPRV persistence and viral evolution, and direct an appropriate vaccination response. Yet, access to the required sequencing technology is low in resource-limited settings and is compounded by the difficulty of transporting clinical samples from wildlife across international borders due to the Convention on International Trade in Endangered Species (CITES) of Wild Fauna and Flora, and Nagoya Protocol regulations. Oxford nanopore MinION sequencing technology has recently demonstrated an extraordinary performance in the sequencing of PPRV due to its rapidity, utility in endemic countries and comparatively low cost per sample when compared to other whole-genome (WGS) sequencing platforms. In the present study, Oxford nanopore MinION sequencing was utilised to generate complete genomes of PPRV isolates collected from infected goats in Ngorongoro and Momba districts in the northern and southern highlands of Tanzania during 2016 and 2018, respectively. The tiling multiplex polymerase chain reaction (PCR) was carried out with twenty-five pairs of long-read primers. The resulting PCR amplicons were used for nanopore library preparation and sequencing. The analysis of output data was complete genomes of PPRV, produced within four hours of sequencing (accession numbers: MW960272 and MZ322753). Phylogenetic analysis of the complete genomes revealed a high nucleotide identity, between 96.19 and 99.24% with lineage III PPRV currently circulating in East Africa, indicating a common origin. The Oxford nanopore MinION sequencer can be deployed to overcome diagnostic and surveillance challenges in the PPR Global Control and Eradication program. However, the coverage depth was uneven across the genome and amplicon dropout was observed mainly in the GC-rich region between the matrix (M) and fusion (F) genes of PPRV. Thus, larger field studies are needed to allow the collection of sufficient data to assess the robustness of nanopore sequencing technology.

9.
Viruses ; 13(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578467

RESUMO

Foot and mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals with serious economic consequences. FMD is endemic in Southeast Asia (SEA) and East Asia (EA) with the circulation of multiple serotypes, posing a threat to Australia and other FMD-free countries. Although vaccination is one of the most important control measures to prevent FMD outbreaks, the available vaccines may not be able to provide enough cross-protection against the FMD viruses (FMDVs) circulating in these countries due to the incursion of new lineages and sub-lineages as experienced in South Korea during 2010, a FMD-free country, when a new lineage of serotype O FMDV (Mya-98) spread to the country, resulting in devastating economic consequences. In this study, a total of 62 serotype O (2013-2018) viruses selected from SEA and EA countries were antigenically characterized by virus neutralization tests using three existing (O/HKN/6/83, O/IND/R2/75 and O/PanAsia-2) and one putative (O/MYA/2009) vaccine strains and full capsid sequencing. The Capsid sequence analysis revealed three topotypes, Cathay, SEA and Middle East-South Asia (ME-SA) of FMDVs circulating in the region. The vaccines used in this study showed a good match with the SEA and ME-SA viruses. However, none of the recently circulating Cathay topotype viruses were protected by any of the vaccine strains, including the existing Cathay topotype vaccine (O/HKN/6/83), indicating an antigenic drift and, also the urgency to monitor this topotype in the region and develop a new vaccine strain if necessary, although currently the presence of this topotype is mainly restricted to China, Hong Kong, Taiwan and Vietnam. Further, the capsid sequences of these viruses were analyzed that identified several capsid amino acid substitutions involving neutralizing antigenic sites 1, 2 and 5, which either individually or together could underpin the observed antigenic drift.


Assuntos
Deriva e Deslocamento Antigênicos , Antígenos Virais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Substituição de Aminoácidos , Animais , Sudeste Asiático , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Genótipo , Testes de Neutralização , Filogenia , Sorogrupo , Vacinas Virais/imunologia
10.
Animals (Basel) ; 11(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34438664

RESUMO

Peste des petits ruminants virus (PPRV) causes a highly devastating disease, peste des petits ruminants (PPR) of sheep and goats, that threatens food security, small ruminant production, and the conservation of wild small ruminants in many developing countries, especially in Africa. Robust serological and molecular diagnostic tools are available to detect PPRV infection, but they were mainly developed for domestic sheep and goats. The presence of a wide host range for PPRV does present serological diagnostic challenges. New innovative diagnostic tools are needed to detect PPRV in atypical hosts (e.g., Camelidae, Suidae, and Bovinae), in wildlife ecosystems and in complex field situations. Interestingly, single-domain antigen binding fragments (nanobodies) derived from heavy-chain-only camelid antibodies have emerged as a new hope in the development of accurate, rapid, and cost-effective diagnostic tools in veterinary and biomedical fields that are suitable for low-income countries. The main objective of this study was to construct an immune nanobody library to retrieve PPRV-reactive nanobodies that enable the development of diagnostic and therapeutic nanobodies in the future. Here, a strategy was developed whereby an alpaca (Vicugna pacos) was immunized with a live attenuated vaccine strain (PPRV/N/75/1) to raise an affinity-matured immune response in the heavy-chain-only antibody classes. The nanobody gene repertoire was engineered in pMECS-GG phagemid, whereby a ccdB gene (encoding a lethal protein) was substituted by the nanobody gene. An immune nanobody library with approximately sixty-four million independent transformants was constructed, of which 100% contained an insert with the proper size of nanobody gene. Following phage display and biopanning, nine nanobodies that specifically recognise completely inactivated PPRV were identified on enzyme-linked immunosorbent assay. They showed superb potency in rapidly identifying PPRV, which is likely to open a new perspective in the diagnosis and possible treatment of PPR infection.

11.
Viruses ; 13(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066336

RESUMO

Peste des petits ruminants (PPR) is a viral disease of goats and sheep that occurs in Africa, the Middle East and Asia with a severe impact on livelihoods and livestock trade. Many wild artiodactyls are susceptible to PPR virus (PPRV) infection, and some outbreaks have threatened endangered wild populations. The role of wild species in PPRV epidemiology is unclear, which is a knowledge gap for the Global Strategy for the Control and Eradication of PPR. These studies aimed to investigate PPRV infection in wild artiodactyls in the Greater Serengeti and Amboseli ecosystems of Kenya and Tanzania. Out of 132 animals purposively sampled in 2015-2016, 19.7% were PPRV seropositive by ID Screen PPR competition enzyme-linked immunosorbent assay (cELISA; IDvet, France) from the following species: African buffalo, wildebeest, topi, kongoni, Grant's gazelle, impala, Thomson's gazelle, warthog and gerenuk, while waterbuck and lesser kudu were seronegative. In 2018-2019, a cross-sectional survey of randomly selected African buffalo and Grant's gazelle herds was conducted. The weighted estimate of PPRV seroprevalence was 12.0% out of 191 African buffalo and 1.1% out of 139 Grant's gazelles. All ocular and nasal swabs and faeces were negative by PPRV real-time reverse transcription-polymerase chain reaction (RT-qPCR). Investigations of a PPR-like disease in sheep and goats confirmed PPRV circulation in the area by rapid detection test and/or RT-qPCR. These results demonstrated serological evidence of PPRV infection in wild artiodactyl species at the wildlife-livestock interface in this ecosystem where PPRV is endemic in domestic small ruminants. Exposure to PPRV could be via spillover from infected small ruminants or from transmission between wild animals, while the relatively low seroprevalence suggests that sustained transmission is unlikely. Further studies of other major wild artiodactyls in this ecosystem are required, such as impala, Thomson's gazelle and wildebeest.


Assuntos
Animais Selvagens/virologia , Ecossistema , Gado/virologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Doenças dos Animais/epidemiologia , Doenças dos Animais/história , Doenças dos Animais/virologia , Animais , Estudos Transversais , Surtos de Doenças , Geografia Médica , História do Século XXI , Quênia/epidemiologia , Peste dos Pequenos Ruminantes/história , Vírus da Peste dos Pequenos Ruminantes/classificação , Vigilância em Saúde Pública , Estudos Soroepidemiológicos , Tanzânia/epidemiologia
12.
Vaccines (Basel) ; 8(2)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268574

RESUMO

Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organization (FAO) have set a goal to eradicate peste des petits ruminants (PPR) globally by 2030. Vaccination is being taken forward as the key strategy along with epidemiological surveillance to target vaccination efforts and eradicate the disease. PPR is highly contagious and is generally spread by aerosolized droplets and close contact. Currently, two live attenuated vaccines (Nigeria 75/1 and Sungri 96) are in use, and administered subcutaneously to prevent transmission of PPR and protect vaccinated animals. Though the target cells that support primary replication of PPR vaccine strains are largely unknown, it is hypothesized that the immune response could be intensified following intranasal vaccine delivery as this route mimics the natural route of infection. This study aims to compare the immunogenicity and protective efficacy of the two currently available live attenuated PPR vaccines following subcutaneous and intranasal routes of vaccination in target species. Groups of five goats were vaccinated with live attenuated PPR vaccines (Nigeria 75/1 and Sungri 96) by either the subcutaneous or intranasal route, and 28 days later challenged intranasally with virulent PPR virus. All vaccinated animals regardless of vaccination route produced PPRV-specific antibodies post-vaccination. Following challenge, all goats were protected from clinical disease, and vaccination was considered to have induced sterilizing immunity. This study demonstrates that the intranasal route of vaccination is as effective as the subcutaneous route of vaccination when using available live attenuated PPR vaccines.

13.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244509

RESUMO

Peste des petits ruminants (PPR) disease was first confirmed in Tanzania in 2008 in sheep and goats in Ngorongoro District, northern Tanzania, and is now endemic in this area. This study aimed to characterise PPR disease in pastoralist small ruminant flocks in Ngorongoro District. During June 2015, 33 PPR-like disease reports were investigated in different parts of the district, using semi-structured interviews, clinical examinations, PPR virus rapid detection test (PPRV-RDT), and laboratory analysis. Ten flocks were confirmed as PPRV infected by PPRV-RDT and/or real-time reverse transcription-polymerase chain reaction (RT-qPCR), and two flocks were co-infected with bluetongue virus (BTV), confirmed by RT-qPCR. Phylogenetic analysis of six partial N gene sequences showed that the PPR viruses clustered with recent lineage III Tanzanian viruses, and grouped with Ugandan, Kenyan and Democratic Republic of Congo isolates. No PPR-like disease was reported in wildlife. There was considerable variation in clinical syndromes between flocks: some showed a full range of PPR signs, while others were predominantly respiratory, diarrhoea, or oro-nasal syndromes, which were associated with different local disease names (olodua-a term for rinderpest, olkipiei-lung disease, oloirobi-fever, enkorotik-diarrhoea). BTV co-infection was associated with severe oro-nasal lesions. This clinical variability makes the field diagnosis of PPR challenging, highlighting the importance of access to pen-side antigen tests and multiplex assays to support improved surveillance and targeting of control activities for PPR eradication.


Assuntos
Bluetongue/epidemiologia , Coinfecção/epidemiologia , Surtos de Doenças/veterinária , Peste dos Pequenos Ruminantes/epidemiologia , Animais , Animais Domésticos , Anticorpos Antivirais/sangue , Bluetongue/diagnóstico , Bluetongue/patologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Vírus Bluetongue/isolamento & purificação , Coinfecção/diagnóstico , Coinfecção/patologia , Coinfecção/virologia , Diagnóstico Diferencial , Cabras , Peste dos Pequenos Ruminantes/diagnóstico , Peste dos Pequenos Ruminantes/patologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Filogenia , RNA Viral/genética , Ovinos , Tanzânia/epidemiologia
14.
Viruses ; 12(3)2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156067

RESUMO

In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife-livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest-savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs.


Assuntos
Animais Selvagens/virologia , Gado/virologia , Peste dos Pequenos Ruminantes/epidemiologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes , África Oriental/epidemiologia , Animais , Anticorpos Antivirais/imunologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Geografia Médica , Cabras , Masculino , Vírus da Peste dos Pequenos Ruminantes/classificação , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Estudos Soroepidemiológicos , Ovinos
15.
Emerg Infect Dis ; 26(1): 51-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855146

RESUMO

The 2016-2017 introduction of peste des petits ruminants virus (PPRV) into livestock in Mongolia was followed by mass mortality of the critically endangered Mongolian saiga antelope and other rare wild ungulates. To assess the nature and population effects of this outbreak among wild ungulates, we collected clinical, histopathologic, epidemiologic, and ecological evidence. Molecular characterization confirmed that the causative agent was PPRV lineage IV. The spatiotemporal patterns of cases among wildlife were similar to those among livestock affected by the PPRV outbreak, suggesting spillover of virus from livestock at multiple locations and time points and subsequent spread among wild ungulates. Estimates of saiga abundance suggested a population decline of 80%, raising substantial concerns for the species' survival. Consideration of the entire ungulate community (wild and domestic) is essential for elucidating the epidemiology of PPRV in Mongolia, addressing the threats to wild ungulate conservation, and achieving global PPRV eradication.


Assuntos
Animais Selvagens/virologia , Antílopes/virologia , Surtos de Doenças/veterinária , Espécies em Perigo de Extinção , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes , Animais , Espécies em Perigo de Extinção/estatística & dados numéricos , Feminino , Genoma Viral/genética , Masculino , Mongólia/epidemiologia , Peste dos Pequenos Ruminantes/patologia , Vírus da Peste dos Pequenos Ruminantes/genética , Filogenia
16.
Viruses ; 11(8)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370329

RESUMO

Peste des petits ruminants (PPR) is a disease of small ruminants caused by peste des petits ruminants virus (PPRV), and is endemic in Asia, the Middle East and Africa. Effective control combines the application of early warning systems, accurate laboratory diagnosis and reporting, animal movement restrictions, suitable vaccination and surveillance programs, and the coordination of all these measures by efficient veterinary services. Molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) have improved the sensitivity and rapidity of diagnosing PPR. However, currently these assays are only performed within laboratory settings; therefore, the development of field diagnostics for PPR would improve the fast implementation of control policies, particularly when PPR has been targeted to be eradicated by 2030. Loop-mediated isothermal amplification (LAMP) assays are simple to use, rapid, and have sensitivity and specificity within the range of RT-qPCR; and can be performed in the field using disposable consumables and portable equipment. This study describes the development of a novel RT-LAMP assay for the detection of PPRV nucleic acid by targeting the N-protein gene. The RT-LAMP assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. The test displayed 100% concordance with RT-qPCR when considering an RT-qPCR cut-off value of CT >40. Further, the RT-LAMP assay was evaluated using experimental and outbreak samples without prior RNA extraction making it more time and cost-effective. This assay provides a solution for a pen-side, rapid and inexpensive PPR diagnostic for use in the field in nascent PPR eradication programme.


Assuntos
Surtos de Doenças/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Peste dos Pequenos Ruminantes/diagnóstico , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Primers do DNA/genética , DNA Viral/isolamento & purificação , Surtos de Doenças/prevenção & controle , Olho/virologia , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras/virologia , Nariz/virologia , Proteínas do Nucleocapsídeo/genética , Patologia Molecular/métodos , Peste dos Pequenos Ruminantes/sangue , Transcrição Reversa , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/diagnóstico , Temperatura
17.
J Gen Virol ; 100(5): 804-811, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30990405

RESUMO

Foot-and-mouth disease virus (FMDV) displays various epitopes on the capsid outer surface. In addition to the five neutralizing antigenic sites, there is evidence of the existence of other, yet unidentified, epitopes that are believed to play a role in antibody-mediated protection. Previous attempts to identify these epitopes revealed two additional substitutions at positions VP2-74 and -191 (5M2/5 virus) to be of antigenic significance. However, complete resistance to neutralization was not obtained in the neutralization assay, indicating the existence of other, undisclosed epitopes. Results from this study provides evidence of at least two new neutralizing epitopes involving residues VP3-116 and -195 around the threefold axis that have significant impact on the antigenic nature of the virus. These findings extend our knowledge of the surface features of the FMDV capsid known to elicit neutralizing antibodies, and should help with rational vaccine design.


Assuntos
Epitopos/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Antígenos Virais/genética , Capsídeo/imunologia , Proteínas do Capsídeo/genética , Febre Aftosa/virologia , Testes de Neutralização/métodos , Sorogrupo
18.
Sci Rep ; 9(1): 4742, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894600

RESUMO

Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease affecting mainly sheep and goats, but also a large number of wild species within the order Artiodactyla. A better understanding of PPR transmission dynamics in multi-host systems is necessary to efficiently control the disease, in particular where wildlife and livestock co-occur. Notably, the role of wildlife in PPR epidemiology is still not clearly understood. Non-invasive strategies to detect PPR infection without the need for animal handling could greatly facilitate research on PPR epidemiology and management of the disease in atypical hosts and in complex field situations. Here, we describe optimized methods for the direct detection of PPR virus genetic material and antigen in fecal samples. We use these methods to determine the detection window of PPR in fecal samples, and compare the sensitivity of these methods to standard invasive sampling and PPR diagnostic methods using field samples collected at a wildlife-livestock interface in Africa. Our results show that quantitative reverse transcription PCR (RT-QPCR) amplification of PPRV from fecal swabs has good sensitivity in comparison to ocular swabs. Animals infected by PPRV could be identified relatively early on and during the whole course of infection based on fecal samples using RT-QPCR. Partial gene sequences could also be retrieved in some cases, from both fecal and ocular samples, providing important information about virus origin and relatedness to other PPRV strains. Non-invasive strategies for PPRV surveillance could provide important data to fill major gaps in our knowledge of the multi-host PPR epidemiology.


Assuntos
Monitoramento Epidemiológico , Fezes/virologia , Peste dos Pequenos Ruminantes/epidemiologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Animais , Animais Selvagens/virologia , Antígenos Virais/análise , Artiodáctilos , DNA Viral/análise , Gerenciamento Clínico , Cabras , Gado/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ovinos
19.
Viruses ; 11(3)2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30871054

RESUMO

Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organisation (FAO) have set a goal to globally eradicate Peste des petits ruminants (PPR) by 2030. To support the eradication programme we have quantified the levels of PPR virus (PPRV) nucleic acid excreted in body fluids (blood, feces, saliva, nasal and eye swabs) of PPRV-infected goats to ascertain which days post-infection animals are potentially infectious, and hence direct quarantine activities. The data will also indicate optimal sample strategies to assess presence of PPR infection in the naturally infected herd. Peak PPRV nucleic acid detection in different bodily fluids was between 5 and 10 days post-infection. As such, this period must be considered the most infectious period for contact transmission, although high viral load was observed through RNA detection in nasal excretions from two days post-infection until at least two weeks post-infection. Percentage sample positivity was low both in eye swabs and saliva samples during the early stage of infection although RNA was detected as late as two weeks post-infection. From the individual animal data, PPRV was detected later post-infection in fecal material than in other body fluids and the detection was intermittent. The results from this study indicate that nasal swabs are the most appropriate to sample when considering molecular diagnosis of PPRV.


Assuntos
Erradicação de Doenças , Surtos de Doenças/veterinária , Doenças das Cabras/virologia , Peste dos Pequenos Ruminantes/prevenção & controle , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Animais , Surtos de Doenças/prevenção & controle , Fezes/virologia , Cabras , Masculino , Nariz/virologia , Peste dos Pequenos Ruminantes/sangue , Vírus da Peste dos Pequenos Ruminantes/genética , Reação em Cadeia da Polimerase em Tempo Real , Saliva/virologia
20.
Transbound Emerg Dis ; 66(2): 865-872, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30525310

RESUMO

Recent outbreaks of Peste des petits ruminants (PPR) in the Marmara region of Turkey including the European part of Thrace is important due to its proximity to Europe (Greece and Bulgaria) and the potential threat of spread of PPR into mainland Europe. In order to investigate the circulation of PPRV in the region suspect clinical and necropsy samples were collected from domestic sheep (n = 211) in the Marmara region of Turkey between 2011 and 2012. PPR virus (PPRV) genome was detected in 10.4% (22 out of 211) of sheep samples by real-time RT-PCR, and PPR virus was isolated from lungs of two sheep that died from infection. Of the 22 positive samples nine were used for partial N-gene amplification and sequencing. The phylogenetic analyses indicated that the virus belongs to lineage IV, the same lineage that is circulating in eastern and central part of Turkey since its first official report in 1999. In addition, samples from 100 cattle were collected to investigate potential subclinical circulation of PPRV. However all were found to be negative by real-time RT-PCR, and also in serological tests indicating the large ruminants were likely not exposed or infected with the virus. The impact of these findings on the potential threat of spread of PPR to Europe including the first PPR outbreak in Europe in Bulgaria on 23rd June 2018 is discussed.


Assuntos
Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/genética , Doenças dos Ovinos/virologia , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Surtos de Doenças/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Genoma Viral/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/isolamento & purificação , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Ovinos , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...