Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0248421, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35913176

RESUMO

Coxiella burnetii requires a type IVB secretion system (T4SS) to promote intracellular replication and virulence. We hypothesized that Coxiella employs its T4SS to secrete effectors that enable stealthy colonization of immune cells. To address this, we used RNA sequencing to compare the transcriptional response of murine bone marrow-derived macrophages (BMDM) infected with those of wild-type Coxiella and a T4SS-null mutant at 8 and 24 h postinfection. We found a T4SS-independent upregulation of proinflammatory transcripts which was consistent with a proinflammatory polarization phenotype. Despite this, infected BMDM failed to completely polarize, as evidenced by modest surface expression of CD38 and CD11c, nitrate production, and reduced proinflammatory cytokine and chemokine secretion compared to positive controls. As these BMDM permitted replication of C. burnetii, we employed them to identify T4SS effectors that are essential in the specific cellular context of a primary macrophage. We found five Himar1 transposon mutants in T4SS effectors that had a replication defect in BMDM but not J774A.1 cells. The mutants were also attenuated in a SCID mouse model of infection. Among these candidate virulence factors, we found that CBU1639 contributed to the inhibition of macrophage proinflammatory responses to Coxiella infection. These data demonstrate that while T4SS is dispensable for the stealthy invasion of primary macrophages, Coxiella has evolved multiple T4SS effectors that specifically target macrophage function to proliferate within that specific cellular context. IMPORTANCE Coxiella burnetii, the causative agent of Q fever, preferentially infects macrophages of the respiratory tract when causing human disease. This work describes how primary macrophages respond to C. burnetii at the earliest stages of infection, before bacterial replication. We found that while infected macrophages increase expression of proinflammatory genes after bacterial entry, they fail to activate the accompanying antibacterial functions that might ultimately control the infection. This disconnect between initial response and downstream function was not mediated by the bacterium's type IVB secretion system, suggesting that Coxiella has other virulence factors that dampen host responses early in the infection process. Nevertheless, we were able to identify several type IVB secreted effectors that were specifically required for survival in macrophages and mice. This work is the first to identify type IVB secretion effectors that are specifically required for infection and replication within primary macrophages.


Assuntos
Coxiella burnetii , Febre Q , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coxiella burnetii/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos SCID , Febre Q/metabolismo , Febre Q/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Pathog Dis ; 75(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449081

RESUMO

Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process. However, it is not clear how the T4BSS interacts with the PV membrane since neither a secretion pilus nor an extracellular pore forming apparatus has not been described. To address this, we used the acidified citrate cysteine medium (ACCM) along with cell culture infection and immunological techniques to identify the cellular and extracellular localization of T4BSS components. Interestingly, we found that DotA and IcmX were secreted/released in a T4BSS-dependent manner into the ACCM. Analysis of C. burnetii-infected cell lines revealed that DotA colocalized with the host cell marker CD63 (LAMP3) at the PV membrane. In the absence of bacterial protein synthesis, DotA also became depleted from the PV membrane. These data are the first to identify the release/secretion of C. burnetii T4BSS components during axenic growth and the interaction of a T4BSS component with the PV membrane during infection of host cells.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno , Sistemas de Secreção Tipo IV/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/análise , Tetraspanina 30/análise , Vacúolos/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-28066723

RESUMO

Coxiella burnetii is the causative agent of Q fever and an obligate intracellular pathogen in nature that survives and grows in a parasitophorous vacuole (PV) within eukaryotic host cells. C. burnetii promotes intracellular survival by subverting apoptotic and pro-inflammatory signaling pathways that are typically regulated by nuclear transcription factor-κB (NF-κB). We and others have demonstrated that C. burnetii NMII proteins inhibit expression of pro-inflammatory cytokines and induce expression of anti-apoptotic genes during infection. Here, we demonstrate that C. burnetii promotes intracellular survival by modulating NF-κB subunit p65 (RelA) phosphorylation, and thus activation, in a Type Four B Secretion System (T4BSS)-dependent manner. Immunoblot analysis of RelA phosphorylated at serine-536 demonstrated that C. burnetii increases NF-κB activation via the canonical pathway. However, RelA phosphorylation levels were even higher in infected cells where bacterial protein or mRNA synthesis was inhibited. Importantly, we demonstrate that inhibition of RelA phosphorylation impairs PV formation and C. burnetii growth. We found that a T4BSS-defective mutant (CbΔdotA) elicited phosphorylated RelA levels similar to those of wild type C. burnetii infection treated with Chloramphenicol. Moreover, cells infected with CbΔdotA or wild type C. burnetii treated with Chloramphenicol showed similar levels of GFP-RelA nuclear localization, and significantly increased localization compared to wild type C. burnetii infection. These data indicate that without de novo protein synthesis and a functional T4BSS, C. burnetii is unable to modulate NF-κB activation, which is crucial for optimal intracellular growth.


Assuntos
Coxiella burnetii/metabolismo , NF-kappa B/metabolismo , Febre Q/microbiologia , Fator de Transcrição RelA/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular/microbiologia , Cloranfenicol/farmacologia , Coxiella burnetii/efeitos dos fármacos , Coxiella burnetii/genética , Coxiella burnetii/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Mutação , Subunidade p52 de NF-kappa B/metabolismo , Fosforilação , Febre Q/imunologia , RNA Mensageiro/biossíntese , Transdução de Sinais , Sistemas de Secreção Tipo IV/genética , Vacúolos/microbiologia , Via de Sinalização Wnt
4.
Vector Borne Zoonotic Dis ; 11(7): 917-22, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21254834

RESUMO

Q fever, a zoonotic disease, is caused by a gram-negative intracellular bacterium, Coxiella burnetii. Although normally transmitted during exposure to infectious aerosols, C. burnetii is also found in arthropod vectors. In the environment, ticks are thought to play a crucial role in bacterial maintenance and transmission by infecting various mammalian species. However, the nature of the pathogen-tick relationship is not well defined. To determine C. burnetii's interactions with a cultured tick cell line, we introduced purified C. burnetii NMII into Ixodes scapularis-derived IDE8 cells and assayed for bacterial presence, replication, gene expression, and subsequent infectivity for mammalian cells. Tick cells were harvested at 24 h, 72 h, 7 days, and 11 days postinfection (PI). C. burnetii uptake and subsequent replication was demonstrated by indirect immunofluorescence assay, electron microscopy, and real-time polymerase chain reaction (PCR). When a genome equivalent multiplicity of infection of 30 was used, 30%-40% of exposed cells were seen to have small, rounded, vacuoles at 72 h PI, whereas at 7 and 11 days PI, 60%-70% of cells contained enlarged vacuoles harboring large numbers of bacteria. Quantitative PCR analysis of total genomic DNA confirmed that C. burnetii genome numbers increased significantly from 24 h to 11 days PI. Expression of C. burnetii type four secretion system homologs at 7 days PI was demonstrated by reverse transcriptase PCR. Finally, indirect immunofluorescence assay demonstrated that C. burnetii propagated within IDE8 cells were infectious for mammalian cells. These studies demonstrate the utility of cultured tick cell lines as a model to investigate C. burnetii's molecular interactions with its arthropod vectors.


Assuntos
Coxiella burnetii/patogenicidade , Ixodes/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Chlorocebus aethiops , Coxiella burnetii/genética , Coxiella burnetii/crescimento & desenvolvimento , Técnica Indireta de Fluorescência para Anticorpo , Reação em Cadeia da Polimerase , Células Vero
5.
BMC Microbiol ; 10: 244, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20854687

RESUMO

BACKGROUND: Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. RESULTS: We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 µg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. CONCLUSIONS: Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not it is actively synthesizing proteins. These findings indicate that C. burnetii modulates the host cell gene expression to avoid the immune response, preserve the host cell from death, and direct the development and maintenance of a replicative PV by controlling vesicle formation and trafficking within the host cell during infection.


Assuntos
Proteínas de Bactérias/biossíntese , Coxiella burnetii/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Monócitos/metabolismo , Morte Celular , Linhagem Celular , Proliferação de Células , Cloranfenicol/farmacologia , Coxiella burnetii/imunologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/genética , Monócitos/microbiologia , Análise Serial de Proteínas , Vacúolos/microbiologia , Vacúolos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...