Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052681

RESUMO

Circuit integration has revolutionized the diagnostic sector by improving the sensing ability and rapidity of biosensors. Bioelectronics has led to the development of point-of-care (PoC) devices, offering superior performance compared with conventional biosensing systems. These devices have lower production costs, are smaller, and have greater reproducibility, enabling the construction of compact sensing modules. Flexible upgrades to the fabrication pattern of the printed circuit board (PCB) remains the most reliable and consistent means so far, offering portability, wearability, a lower detection limit, and smart output integration to these devices. This review summarizes the advances in PCB technology for biosensing devices for introducing automation and their emerging application as an alternative matrix material for detecting various analytes.

2.
Nanotheranostics ; 7(2): 167-175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793351

RESUMO

The focus of this research is to design a bioengineered drug delivery vehicle that is efficient in anti-cancer drug delivery in a controlled manner. The experimental work focuses on constructing a methotrexate-loaded nano lipid polymer system (MTX-NLPHS) that can transport methotrexate (MTX) in MCF-7 cell lines in a controlled manner through endocytosis via phosphatidylcholine. In this experiment, MTX is embedded with polylactic-co-glycolic acid (PLGA) in phosphatidylcholine, which acts as a liposomal framework for regulated drug delivery. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and dynamic light scattering (DLS) were utilized to characterize the developed nanohybrid system. The particle size and encapsulation efficiency of the MTX-NLPHS were found to be 198 ± 8.44 nm and 86.48 ± 0.31 %, respectively, which is suitable for biological applications. The polydispersity index (PDI) and zeta potential of the final system were found to be 0.134 ± 0.048 and -28 ± 3.50 mV, respectively. The lower value of PDI showed the homogenous nature of the particle size, whereas higher negative zeta potential prevented the system from agglomeration. An in vitro release kinetics was conducted to see the release pattern of the system, which took 250 h for 100% drug release This kind of system may carry the drug for a long time in the circulatory system and prevent the drug discharge. Other cell culture assays such as 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and reactive oxygen species (ROS) monitoring were used to see the effect of inducers on the cellular system. MTT assay showed cell toxicity of MTX-NLPHS reduced at the lower concentration of the MTX, however, toxicity increased at the higher concentration of the MTX as compared to free MTX. ROS monitoring c revealed more scavenging of ROS using MTX-NLPHS as compared to free MTX. Confocal microscopy suggested the MTX-NLPHS induced more nuclear elongation with cell shrinkage comparatively.


Assuntos
Metotrexato , Neoplasias , Humanos , Metotrexato/farmacologia , Metotrexato/química , Preparações Farmacêuticas , Espécies Reativas de Oxigênio , Polímeros/química , Fosfatidilcolinas , Neoplasias/tratamento farmacológico
3.
Int J Biol Macromol ; 230: 123132, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610567

RESUMO

The present study relates a portable optical sensing device supported by a small single-board (SBC) computer. The electronic architectural avenue connects the SBC with a camera, LED lights and a monitor. A 'sensor integration unit' has been linked with the device where the biological reactions were performed and assessed based on the concentration-dependent optical signal outputs. This setup can detect the generation of colors and distinguish their changes in the RGB intensity scale with an accuracy of a single pixel unit. A predefined range of values was obtained and fed to the device that can quantitatively sense the molecule of interest on the sensing matrix. The device has a touchscreen interactive panel that allows users to manually set experimental conditions and connect the entire measurement process to the cloud storage for backup information. We have considered detecting Alkaline Phosphatase (ALP) quantitatively from standard solutions as well as in milk samples as a proof-of-concept protein molecule. The device has shown exceptional analytical performance for lower and higher concentration ranges (0-100 U/mL and 100-1000 U/mL) with correlation coefficient values of 0.99. The detection limit of ALP was determined to be 0.1 U/mL, and the average time of a sample assessment was recorded to be 15 s. The device has also been tested against ALP-spiked milk samples to check its effectiveness and commercial viability. The outcome of the real-time assessment was sensitive and efficient, indicating its direct commercial and clinical importance towards colorimetric detection for diverse macromolecules.


Assuntos
Fosfatase Alcalina , Leite , Animais , Leite/metabolismo , Fosfatase Alcalina/metabolismo , Limite de Detecção
4.
Biosensors (Basel) ; 12(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36551029

RESUMO

Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Dendritos
5.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551084

RESUMO

Creatinine is one of the most common and specific biomarkers for renal diseases, usually found in the serum and urine of humans. Its level is extremely important and critical to know, not only in the case of renal diseases, but also for various other pathological conditions. Hence, detecting creatinine in clinically relevant ranges in a simplistic and personalized manner is interesting and important. In this direction, an optical sensing device has been developed for the simple, point-of-care detection of creatinine. The developed biosensor was able to detect creatinine quantitatively based on optical signals measured through a change in color. The sensor has been integrated with a smartphone to develop a palm-sized device for creatinine analysis in personalized settings. The sensor has been developed following facile chemical modification steps to anchor the creatinine-selective antibody to generate a sensing probe. The fabricated sensor has been thoroughly characterized by FTIR, AFM, and controlled optical analyses. The quantitative analysis is mediated through the reaction between picric acid and creatinine which was detected by the antibody-functionalized sensor probe. The differences in color intensity and creatinine concentrations show an excellent dose-dependent correlation in two different dynamic ranges from 5 to 20 µM and 35 to 400 µM, with a detection limit of 15.37 (±0.79) nM. Several interfering molecules, such as albumin, glucose, ascorbic acid, citric acid, glycine, uric acid, Na+, K+, and Cl-, were tested using the biosensor, in which no cross-reactivity was observed. The utility of the developed system to quantify creatinine in spiked serum samples was validated and the obtained percentage recoveries were found within the range of 89.71-97.30%. The fabricated biosensor was found to be highly reproducible and stable, and it retains its original signal for up to 28 days.


Assuntos
Técnicas Biossensoriais , Humanos , Creatinina/urina , Colorimetria , Biomarcadores/urina , Anticorpos , Rim
6.
Biotechnol Bioeng ; 119(11): 3022-3043, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35950676

RESUMO

Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site-targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of the cancer cells. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand-decorated lipid-based nanomedicines with their clinical status have been explained in tabulated form to provide a wider scope to the readers regarding ligand-coupled NLBCs.


Assuntos
Nanopartículas , Neoplasias , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Ligantes , Nanomedicina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Medicina de Precisão
7.
Int J Biol Macromol ; 218: 225-242, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870626

RESUMO

Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.


Assuntos
Técnicas Biossensoriais , Anticorpos , Antígenos , Bioengenharia , Técnicas Biossensoriais/métodos
8.
Biotechnol Bioeng ; 119(8): 2046-2063, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35470439

RESUMO

The ocean covers two-third of our planet and has great biological heterogeneity. Marine organisms like algae, vertebrates, invertebrates, and microbes are known to provide many natural products with biological activities as well as potential sources of biomaterials for therapeutic, biomedical, biosensors, and climate stabilization. Over the years, the field of biosensors has gained huge attention due to their extraordinary ability to provide early disease diagnosis, rapid detection of various molecules and substances along with long-term monitoring. This review aims to focus on the properties and employment of various biomaterials (carbohydrate polymers, proteins, polyacids, etc.) of marine origins such as alginate, chitin, chitosan, fucoidan, carrageenan, chondroitin sulfate, hyaluronic acid, collagen, marine pigments, marine nanoparticles, hydroxyapatite, biosilica, lectins, and marine whole cell in the design and development of biosensors. Furthermore, this review also covers the source of such marine biomaterials and their promising evolution in the fabrication of biosensors that are potent to be employed in the biomedical, environmental science, and agricultural sciences domains. The use of such fabricated biosensors harnesses the system with excellent specificity, selectivity, biocompatibility, thermal stability, and minimal cost advantages.


Assuntos
Técnicas Biossensoriais , Quitosana , Animais , Organismos Aquáticos , Materiais Biocompatíveis , Quitina , Polímeros , Polissacarídeos
9.
Biosensors (Basel) ; 12(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35200341

RESUMO

Viral infections are becoming the foremost driver of morbidity, mortality and economic loss all around the world. Treatment for diseases associated to some deadly viruses are challenging tasks, due to lack of infrastructure, finance and availability of rapid, accurate and easy-to-use detection methods or devices. The emergence of biosensors has proven to be a success in the field of diagnosis to overcome the challenges associated with traditional methods. Furthermore, the incorporation of aptamers as bio-recognition elements in the design of biosensors has paved a way towards rapid, cost-effective, and specific detection devices which are insensitive to changes in the environment. In the last decade, aptamers have emerged to be suitable and efficient biorecognition elements for the detection of different kinds of analytes, such as metal ions, small and macro molecules, and even cells. The signal generation in the detection process depends on different parameters; one such parameter is whether the labelled molecule is incorporated or not for monitoring the sensing process. Based on the labelling, biosensors are classified as label or label-free; both have their significant advantages and disadvantages. Here, we have primarily reviewed the advantages for using aptamers in the transduction system of sensing devices. Furthermore, the labelled and label-free opto-electrochemical aptasensors for the detection of various kinds of viruses have been discussed. Moreover, numerous globally developed aptasensors for the sensing of different types of viruses have been illustrated and explained in tabulated form.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Viroses , Vírus , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Humanos , Vírus/isolamento & purificação
10.
Biotechnol Bioeng ; 119(3): 784-806, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958139

RESUMO

Silk is a fibrous protein, has been a part of human lives for centuries,  and was used as suture and textile material. Silk is mainly produced by the members of certain arthropods such as spiders, butterflies, mites, and moths. However, recent technological advances have revolutionized silk as a biomaterial for various applications ranging from heat sensors to robust fibers. The biocompatibility, mechanical resilience, and biodegradability of the material make it a suitable candidate for biomaterials. Silk can also be easily converted into several morphological forms, including fibers, films, sponges, and hydrogels. Provided these abilities, silk have received excellent traction from scientists worldwide for various developments, one of them being its use as a bio-sensor. The diversity of silk materials offers various options, giving scientists the freedom to choose from and personalize them as per their needs. In this review, we foremost look upon the composition, production, properties, and various morphologies of silk. The numerous applications of silk and its derivatives for fabricating biosensors to detect small molecules, macromolecules, and cells have been explored comprehensively. Also, the data from various globally developed sensors using silk have been described into organized tables for each category of molecules, along with their important analytical details.


Assuntos
Borboletas , Aranhas , Animais , Materiais Biocompatíveis , Borboletas/metabolismo , Hidrogéis , Seda/metabolismo , Aranhas/metabolismo
11.
Biosensors (Basel) ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073910

RESUMO

Recent advancement has been accomplished in the field of biosensors through the modification of cellulose as a nano-engineered matrix material. To date, various techniques have been reported to develop cellulose-based matrices for fabricating different types of biosensors. Trends of involving cellulosic materials in paper-based multiplexing devices and microfluidic analytical technologies have increased because of their disposable, portable, biodegradable properties and cost-effectiveness. Cellulose also has potential in the development of cytosensors because of its various unique properties including biocompatibility. Such cellulose-based sensing devices are also being commercialized for various biomedical diagnostics in recent years and have also been considered as a method of choice in clinical laboratories and personalized diagnosis. In this paper, we have discussed the engineering aspects of cellulose-based sensors that have been reported where such matrices have been used to develop various analytical modules for the detection of small molecules, metal ions, macromolecules, and cells present in a diverse range of samples. Additionally, the developed cellulose-based biosensors and related analytical devices have been comprehensively described in tables with details of the sensing molecule, readout system, sensor configuration, response time, real sample, and their analytical performances.


Assuntos
Bioengenharia , Técnicas Biossensoriais , Celulose
12.
Biomater Sci ; 9(1): 124-132, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107498

RESUMO

Three new coordination polymers (CPs), namely [{M(HL)(L)(H2O)}(ClO4)(H2O)]∞ (M = Zn for CP 1, Mn for CP 2, Cu for CP 3) were synthesized to explore their efficacy as lysosome-targetable luminescent bioprobes. The synthesized CPs were characterized by techniques including single-crystal X-ray analysis, FTIR spectroscopy and elemental analysis. Single-crystal analysis revealed the formation of iso-structural CPs displaying distorted adamantoid topology developed by bridging ligands and H-bonds connections and metals at the nodes. A green hand-grinding technique with a mortar and pestle resulted in nanoscale coordination polymers (NCPs) suitable for cell permeability and was further confirmed by SEM and DLS analyses. Two of these hand-ground nanoscale coordination polymers NCP 1 and NCP 2 showed excellent green luminescence and were explored as potential and selective long-time biotrackers towards lysosome using the human lung carcinoma cell line (A549). Strikingly, the developed bioprobe displayed excellent bio-availability, photostability and excellent selectivity towards lysosomes sustained by various in vitro cell imaging experiments. Moreover, the long-term probing ability of these NCPs turned out to be better than the commercially available lysosome tracker i.e. LysoTracker Red, indicating their potential real-life application in bio-imaging. To the best ofour knowledge, this is the first example of nonexpensive and less toxic essential transition metal-based nanoscale coordination polymers that can behave as effective lysosome-targetable luminescent bioprobes.


Assuntos
Técnicas Biossensoriais , Polímeros , Humanos , Ligantes , Luminescência , Lisossomos
13.
Biosens Bioelectron ; 165: 112361, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729494

RESUMO

The recent outbreak of the coronavirus disease (COVID-19) has left the world clueless. As the WHO declares this new contagion as a pandemic on the 11th of March 2020, the alarming rate of the spawn of the disease in such a short period has disarranged the globe. Standing against this situation researchers are strenuously searching for the key traits responsible for this pandemic. As knowledge regarding the dynamics and host-path interaction of COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is currently unknown, the formulation of strategies concerning antiviral treatment, vaccination, and epidemiological control stands crucial. Before designing adequate therapeutic strategies, it is extremely essential to diagnose the disease at the outset as early detection can have a greater impact on building health system capacity. Hence, a comprehensive review of strategies for COVID-19 diagnosis is essential in this existing global situation. In this review, sequentially, we have provided the clinical details along with genetic and proteomic biomarkers related to COVID-19. The article systematically enlightens a clear overview of the clinically adopted techniques for the detection of COVID-19 including oligonucleotide-based molecular detection, Point-of-Care immunodiagnostics, radiographical analysis/sensing system, and newly developed biosensing prototypes having commercial viability. The commercial kits/analytical methods based-sensing strategies have also been tabulated categorically. The critical insights on the developer, commercial brand name, detection methods, technical operational details, detection time, clinical specimen, status, the limit of detection/detection ability have been discussed comprehensively. We believe that this review may provide scientists, clinicians and healthcare manufacturers valuable information regarding the most recent developments/approaches towards COVID-19 diagnosis.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/métodos , Infecções por Coronavirus/diagnóstico , Dispositivos Lab-On-A-Chip , Pneumonia Viral/diagnóstico , Testes Imediatos , Animais , Anticorpos Imobilizados/química , Betacoronavirus/genética , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , COVID-19 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Infecções por Coronavirus/sangue , Infecções por Coronavirus/virologia , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Nanoestruturas/química , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/virologia , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2
14.
Int J Nanomedicine ; 14: 1753-1777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880978

RESUMO

BACKGROUND: Diabetic nephropathy (DN), an end-stage renal disorder, has posed a menace to humankind globally, because of its complex nature and poorly understandable intricate mechanism. In recent times, functional foods as potential health benefits have been gaining attention of consumers and researchers alike. Rich in antioxidants, the peel and seed of pomegranate have previously demonstrated protection against oxidative-stress-related diseases, including cardiovascular disorders, diabetes, and cancer. PURPOSE: This study was designed to investigate the ameliorative role of pomegranate peel extract-stabilized gold nanoparticle (PPE-AuNP) on streptozotocin (STZ)-induced DN in an experimental murine model. METHODS: Following the reduction methods, AuNP was prepared using the pomegranate peel ellagitannins and characterized by particle size, physical appearance, and morphological architecture. Modulatory potential of PPE-AuNP was examined through the plethora of biochemical and high throughput techniques, flow cytometry, immunoblotting, and immunofluorescence. RESULTS: The animals treated with PPE-AuNP markedly reduced the fasting blood glucose, renal toxicity indices, and serum TC and TG in a hyperglycemic condition. As evident from an increased level of plasma insulin level, PPE-AuNP normalized the STZ-induced pancreatic ß-cell dysfunction. The STZ-mediated suppression of endogenous antioxidant response was restored by the PPE-AuNP treatment, which reduced the generation of LPO as well as iROS. Furthermore, the hyperglycemia-mediated augmentation of protein glycation, followed by the NOX4/p-47phox activation, diminished with the application of PPE-AuNP. The histological and immunohistochemical findings showed the protective efficacy of PPE-AuNP in reducing STZ-induced glomerular sclerosis and renal fibrosis. In addition, it reduced proinflammatory burden through the modulation of the MAPK/NF-κB/STAT3/cytokine axis. Simultaneously, PI3K/AKT-guided Nrf2 activation was evident upon the PPE-AuNP application, which enhanced the antioxidant response and maintained hyperglycemic homeostasis. CONCLUSION: The findings indicate that the use of PPE-AuNPs might act as an economic therapeutic remedy for alleviating DN.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Ouro/química , Lythraceae/química , Nanopartículas Metálicas/química , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Animais , Antioxidantes/metabolismo , Disponibilidade Biológica , Colesterol/sangue , Nefropatias Diabéticas/sangue , Hemoglobinas Glicadas/metabolismo , Hiperglicemia/sangue , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/patologia , Inflamação/complicações , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos BALB C , NADPH Oxidases/metabolismo , Nefrite/complicações , Nefrite/tratamento farmacológico , Nefrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Estreptozocina , Triglicerídeos/sangue
15.
Chem Commun (Camb) ; 54(86): 12270, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30324943

RESUMO

Correction for 'A new triazine based π-conjugated mesoporous 2D covalent organic framework: its in vitro anticancer activities' by Sabuj Kanti Das et al., Chem. Commun., 2018, 54, 11475-11478.

17.
Inorg Chem ; 57(7): 4050-4060, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29543450

RESUMO

Five new coordination polymers (CPs) namely, [{Zn(µ2-H2O)0.5(5N3-IPA)(2,2'-bpe)}]∞ (1), [{Zn(µ2-H2O)0.5(5N3-IPA)(1,10-phen)}]∞ (2), [{Zn(5N3-IPA)(1,2-bpe)}]∞ (3), [{Zn(5N3-IPA)(1,2-bpey)}]∞ (4), and [{Zn(H2O)(5N3-IPA)(4,4'-tme)}(H2O)0.5]∞ (5) (5N3-H2IPA = 5-azidoisophthalic acid, 2,2'-bpe= 2,2'-bipyridine, 1,10-phen = 1,10-phenanthroline, 1,2-bpe = 1,2-bis(4-pyridyl)ethane, 1,2-bpey = 1,2-bis(4-pyridyl)ethylene, 4,4'-tme = 4,4'-trimethylenedipyridine), have been synthesized based on a mixed ligand approach adopting a solvothermal technique. Depending upon the intrinsic structural flexibility of the bis-pyridyl coligands, interesting structural topologies have also been observed in the resulting CPs: Sra SrAl2 type topology for 3 and a 3-fold interpenetrated dmp topology for 4. A green hand grinding technique has been implemented to reduce the particle size of the CPs to generate nanoscale CPs (NCPs). SEM studies of NCPs reveal the formation of square and spherical particles for NCP 1 and 2, respectively, and nano rod for NCP 3, 4, and 5. Remarkably, when scaled down to nano range all the NCPs retain their crystalline nature. The cytotoxic activity of the NCPs (1-5) has been studied using human colorectal carcinoma cells (HCT 116). Significant cell death is observed for NCP 2, which is further corroborated by cell growth inhibition study. The observed cell death is likely to be due to mitochondrial-assisted apoptosis as is evident from immunofluorescence study.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Nanoestruturas/química , Polímeros/farmacologia , Zinco/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Química Verde , Células HCT116 , Humanos , Ligantes , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...