Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 2): 133090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878920

RESUMO

Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.


Assuntos
Celulose , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Celulose/química , Biopolímeros/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
2.
Water Sci Technol ; 87(3): 635-659, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789709

RESUMO

Alkaline leachate, dust generation, and foul smell during the stacking process of natural rubber biosludge (NRBS) can pollute surrounding water, soil, and air. In this study, natural rubber chemically activated carbon (NRCAC) has been synthesized for the first time from NRBS by pyrolysis using ZnCl2 at 700 °C for adsorptive removal of Cr(VI) and methylene blue (MB) from aqueous solutions. Both NRBS and NRCAC were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), and thermogravimetric analyzer (TGA). FTIR and SEM-EDS suggested significant functional and morphological transformations in NRCAC. Experimental investigations of different process parameters, such as pH, concentration, contact time, salt concentration, etc., were conducted to study their influences on adsorption. Adsorption and desorption kinetics followed a pseudo-second-order model, while adsorption equilibrium followed Liu isotherm. Maximum uptake calculated from the Liu model was 81.28 and 211.90 mg/g for Cr(VI) and MB, respectively. Thermodynamic analysis established spontaneous and endothermic adsorption. Up to five adsorption/desorption cycles were conducted using eluents such as 1 M NaOH and water for Cr(VI) and MB, respectively. Electrostatic attraction and ion-exchange favored Cr(VI)/MB adsorption, while hydrogen bonding and π-π stacking were significant in MB uptake. Overall findings suggest that NRBS (a renewable agro-industrial, abundant, and freely available) could be employed to synthesize biochar for adsorptive removal of wastewater containing Cr(VI)/MB.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/análise , Borracha , Adsorção , Carvão Vegetal , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Termodinâmica , Cromo/química , Água/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Bioresour Technol ; 343: 126135, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655775

RESUMO

The adsorptive removal of Cr(VI) and methylene blue (MB) was studied in a batch reactor using activated carbon (RAC), prepared from natural rubber waste, along with the commercial activated carbon (CAC). Maximum uptake of Cr(VI) and MB by the RAC was 21 and 30 mg g-1, respectively, whereas the corresponding uptake by CAC was 145 and 224 mg g-1. The kinetics of adsorption, however, was found to be faster in RAC than CAC. Both adsorbents were characterized by XRD, FT-IR, and FESEM-EDS. The predictability of various kinetic models, including the Weber-Morris model, was adversely affected by linearization. A multi-linear plot of adsorbed concentration versus square root of time failed to justify the multi-resistance hypothesis of mass transfer. Experimental kinetic data matched well with four surface reactions and an intraparticle diffusion model but showed substantial deviation from the numerical solution of another Fickian model incorporating mass balance and Langmuir isotherm.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Borracha , Esgotos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...