Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 277: 107458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781769

RESUMO

The expansion of the nuclear industry has led to various radioactive effluents, originating from routine operations or catastrophic incidents such as those at Three Mile Island (USA), Chernobyl (Ukraine), and Fukushima (Japan). Research conducted after these events emphasizes Cesium-137 (137Cs) and iodine 131 (131I) as major contributors to harmful airborne dispersion and fallout. These isotopes infiltrate the human body via inhalation, ingestion, or wounds, posing significant health risks. Understanding contamination mechanisms and devising effective countermeasures are crucial in mitigating nuclear incident consequences. We propose that concurrent administration of Pru-Decorp™/Pru-Decorp-MG and potassium iodide (KI) could synergistically reduce the levels of 137Cs and block uptake of 131I, respectively, in nuclear incident scenarios. Pru-Decorp™ capsules contain insoluble ferric hexacyanoferrate(II) and are equivalent to USFDA-approved Radiogardase®-Cs, offering radiation exposure mitigation for Cs and Tl contamination. Pru-Decorp-MG capsules consist of insoluble PB and magnesium hydroxide, serving as a prophylactic measure to reduce the risk of internal Cs and Tl contamination for rescue responders. Pru-Decorp™/Pru-Decorp-MG binds Cs/Tl ions in the gastrointestinal tract, hindering absorption and promoting excretion, while KI saturates the thyroid gland with stable iodine, decreasing the uptake of radioactive iodine isotopes. Our hypothesis is supported by studies demonstrating the effectiveness of combination therapies, such as calcium alginate, iron(III) ferrocyanide, and KI, in decreasing the retention of radioisotopes in vital organs. To test this hypothesis, we propose a comprehensive research plan, including in vitro studies simulating gastrointestinal conditions, animal studies to evaluate the efficacy of both drugs simultaneously, and safety clinical trials comparing Pru-Decorp™/Pru-Decorp-MG alone, KI alone, and their combination. Expected outcomes include insights into the synergistic effects of Pru-Decorp™/Pru-Decorp-MG and KI, guiding the development of optimized treatment protocols for simultaneous administration during radioactive contamination incidents. This research aims to address significant critical gaps in nuclear incident preparedness by providing evidence-based recommendations for concurrent antidote use in scenarios involving multiple isotope contamination. Ultimately, this will enhance public health and safety during nuclear emergencies.


Assuntos
Radioisótopos de Césio , Ferrocianetos , Radioisótopos do Iodo , Iodeto de Potássio , Iodeto de Potássio/química , Ferrocianetos/química , Radioisótopos de Césio/análise , Radioisótopos do Iodo/análise , Humanos , Monitoramento de Radiação/métodos , Acidente Nuclear de Fukushima , Liberação Nociva de Radioativos
2.
Tuberculosis (Edinb) ; 143: 102417, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827017

RESUMO

Inhaled antibiotics delivered through dry powder inhalers (DPIs) effectively treat severe bacterial infections by directly targeting the lungs. Our study focused on developing inhalable dry powder microspheres of linezolid (LNZ) using biodegradable polycaprolactone (PCL) polymer. The LNZ-PCL microspheres were fabricated using a double emulsification solvent evaporation method. Optimization of formulation parameters was performed using a factorial design. Evaluation of the microspheres included size, shape, drug loading, entrapment efficiency, aerosolization, and drug release. The morphological analysis confirmed spherical-shaped rough particles within the inhalable size range. The encapsulation efficiency was determined to be 52.84%, indicating successful drug incorporation. Aerosolization efficiency was significantly enhanced when LNZ-PCL microspheres were combined with lactose as a carrier, achieving a fine particle fraction (FPF) value of 70.90%. In-vitro dissolution studies demonstrated sustained drug release for over 24 h under lung pH conditions. Overall, our study highlights the potential of inhalable LNZ-PCL microspheres as a targeted approach for treating pulmonary tuberculosis. Further research and in-vivo studies are needed to validate their effectiveness in life-threatening bacterial infections.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Humanos , Linezolida , Microesferas , Emulsões
3.
AAPS PharmSciTech ; 24(5): 131, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291478

RESUMO

Resveratrol (RSV) is a bioactive phytoconstituent that has potential applications in respiratory diseases. However, poor oral bioavailability is the major hurdle to its clinical use. In the present work, resveratrol-loaded polycaprolactone (PCL) inhalable microspheres (MSs) were formulated to improve their therapeutic potential. The inhalable microspheres were formulated using the emulsion-solvent evaporation method. In this research, inhalable resveratrol microspheres were prepared using Tween 80 in place of polyvinyl alcohol which formed insoluble lumps. A 32 factorial design was applied taking polymer (PCL) and emulsifier (Tween 80) as independent variables and drug loading (DL) and encapsulation efficiency (EE) as dependent variables. The DL and EE of the optimized formulation were found to be 30.6% and 63.84% respectively. The in vitro aerosolization study performed using the Anderson cascade impactor showed that the fine particle fraction (FPF) of optimized resveratrol polycaprolactone microspheres (RSV-PCL-MSs) blended with lactose, and RSV-PCL-MSs were significantly higher than those of the pure drugs. The MMADT (theoretical mass median aerodynamic diameter) of optimized RSV-PCL-MSs was found to be 3.25 ± 1.15. The particle size of microspheres was within the inhalable range, i.e., between 1 and 5 µm. The morphological analysis showed spherical-shaped particles with smooth surfaces. The in vitro release study showed sustained drug release from the microspheres for up to 12 h. The study concluded that resveratrol-loaded inhalable microspheres may be an efficient delivery system to treat COPD.


Assuntos
Poliésteres , Polissorbatos , Resveratrol , Microesferas , Emulsificantes , Tamanho da Partícula
4.
AAPS PharmSciTech ; 24(1): 39, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653547

RESUMO

Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Preparações Farmacêuticas , Ácido Láctico/química , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...