Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 13(11): 230330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37935359

RESUMO

Buruli ulcer (BU) is a neglected tropical disease. It is caused by the bacterium Mycobacterium ulcerans and is characterized by skin lesions. Several studies were performed testing the Bacillus Calmette-Guérin (BCG) vaccine in human and animal models and M. ulcerans-specific vaccines in animal models. However, there are currently no clinically accepted vaccines to prevent M. ulcerans infection. The aim of this study was to identify T-cell and B-cell epitopes from the mycobacterial membrane protein large (MmpL) proteins of M. ulcerans. These epitopes were analysed for properties including antigenicity, immunogenicity, non-allergenicity, non-toxicity, population coverage and the potential to induce cytokines. The final 8 CD8+, 12 CD4+ T-cell and 5 B-cell epitopes were antigenic, non-allergenic and non-toxic. The estimated global population coverage of the CD8+ and CD4+ epitopes was 97.71%. These epitopes were used to construct five multi-epitope vaccine constructs with different adjuvants and linker combinations. The constructs underwent further structural analyses and refinement. The constructs were then docked with Toll-like receptors. Three of the successfully docked complexes were structurally analysed. Two of the docked complexes successfully underwent molecular dynamics simulations (MDS) and post-MDS analysis. The complexes generated were found to be stable. However, experimental validation of the complexes is required.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Vacinas , Humanos , Animais , Mycobacterium ulcerans/química , Proteínas de Membrana , Epitopos de Linfócito B/química , Úlcera de Buruli/prevenção & controle , Epitopos de Linfócito T , Simulação de Acoplamento Molecular
2.
Front Immunol ; 13: 1023558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426350

RESUMO

Buruli ulcer is a neglected tropical disease that is characterized by non-fatal lesion development. The causative agent is Mycobacterium ulcerans (M. ulcerans). There are no known vectors or transmission methods, preventing the development of control methods. There are effective diagnostic techniques and treatment routines; however, several socioeconomic factors may limit patients' abilities to receive these treatments. The Bacillus Calmette-Guérin vaccine developed against tuberculosis has shown limited efficacy, and no conventionally designed vaccines have passed clinical trials. This study aimed to generate a multi-epitope vaccine against M. ulcerans from the major facilitator superfamily transporter protein using an immunoinformatics approach. Twelve M. ulcerans genome assemblies were analyzed, resulting in the identification of 11 CD8+ and 7 CD4+ T-cell epitopes and 2 B-cell epitopes. These conserved epitopes were computationally predicted to be antigenic, immunogenic, non-allergenic, and non-toxic. The CD4+ T-cell epitopes were capable of inducing interferon-gamma and interleukin-4. They successfully bound to their respective human leukocyte antigens alleles in in silico docking studies. The expected global population coverage of the T-cell epitopes and their restricted human leukocyte antigens alleles was 99.90%. The population coverage of endemic regions ranged from 99.99% (Papua New Guinea) to 21.81% (Liberia). Two vaccine constructs were generated using the Toll-like receptors 2 and 4 agonists, LprG and RpfE, respectively. Both constructs were antigenic, non-allergenic, non-toxic, thermostable, basic, and hydrophilic. The DNA sequences of the vaccine constructs underwent optimization and were successfully in-silico cloned with the pET-28a(+) plasmid. The vaccine constructs were successfully docked to their respective toll-like receptors. Molecular dynamics simulations were carried out to analyze the binding interactions within the complex. The generated binding energies indicate the stability of both complexes. The constructs generated in this study display severable favorable properties, with construct one displaying a greater range of favorable properties. However, further analysis and laboratory validation are required.


Assuntos
Vacinas Bacterianas , Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Epitopos de Linfócito B , Epitopos de Linfócito T , Antígenos HLA , Mycobacterium ulcerans/genética , Doenças Negligenciadas , Vacinas Bacterianas/imunologia , Úlcera de Buruli/prevenção & controle
3.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891436

RESUMO

Chicken anemia virus (CAV) causes severe clinical and sub-clinical infection in poultry globally and thus leads to economic losses. The drawbacks of the commercially available vaccines against CAV disease signal the need for a novel, safe, and effective vaccine design. In this study, a multiepitope vaccine (MEV) consisting of T-cell and B-cell epitopes from CAV viral proteins (VP1 and VP2) was computationally constructed with the help of linkers and adjuvant. The 3D model of the MEV construct was refined and validated by different online bioinformatics tools. Molecular docking showed stable interaction of the MEV construct with TLR3, and this was confirmed by Molecular Dynamics Simulation. Codon optimization and in silico cloning of the vaccine in pET-28a (+) vector also showed its potential expression in the E. coli K12 system. The immune simulation also indicated the ability of this vaccine to induce an effective immune response against this virus. Although the vaccine in this study was computationally constructed and still requires further in vivo study to confirm its effectiveness, this study marks a very important step towards designing a potential vaccine against CAV disease.


Assuntos
Vírus da Anemia da Galinha , Vacinas Virais , Vírus da Anemia da Galinha/genética , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
4.
Parasitol Res ; 121(7): 1867-1885, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460369

RESUMO

Malaria control measures have been in use for years but have not completely curbed the spread of infection. Ultimately, global elimination is the goal. A major playmaker in the various approaches to reaching the goal is the issue of proper diagnosis. Various diagnostic techniques were adopted in different regions and geographical locations over the decades, and these have invariably produced diverse outcomes. In this review, we looked at the various approaches used in malaria diagnostics with a focus on methods favorably used during pre-elimination and elimination phases as well as in endemic regions. Microscopy, rapid diagnostic testing (RDT), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR) are common methods applied depending on prevailing factors, each with its strengths and limitations. As the drive toward the elimination goal intensifies, the search for ideal, simple, fast, and reliable point-of-care diagnostic tools is needed more than ever before to be used in conjunction with a functional surveillance system supported by the ideal vaccine.


Assuntos
Malária Falciparum , Malária , Testes Diagnósticos de Rotina/métodos , Objetivos , Humanos , Malária/diagnóstico , Malária/prevenção & controle , Malária Falciparum/epidemiologia , Microscopia/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
5.
Biology (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453786

RESUMO

Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.

6.
PLoS One ; 17(2): e0263790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35180257

RESUMO

Human identification of unknown samples following disaster and mass casualty events is essential, especially to bring closure to family and friends of the deceased. Unfortunately, victim identification is often challenging for forensic investigators as analysis becomes complicated when biological samples are degraded or of poor quality as a result of exposure to harsh environmental factors. Mitochondrial DNA becomes the ideal option for analysis, particularly for determining the origin of the samples. In such events, the estimation of genetic parameters plays an important role in modelling and predicting genetic relatedness and is useful in assigning unknown individuals to an ethnic group. Various techniques exist for the estimation of genetic relatedness, but the use of Machine learning (ML) algorithms are novel and presently the least used in forensic genetic studies. In this study, we investigated the ability of ML algorithms to predict genetic relatedness using hypervariable region I sequences; that were retrieved from the GenBank database for three race groups, namely African, Asian and Caucasian. Four ML classification algorithms; Support vector machines (SVM), Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA) and Random Forest (RF) were hybridised with one-hot encoding, Principal component analysis (PCA) and Bags of Words (BoW), and were compared for inferring genetic relatedness. The findings from this study on WEKA showed that genetic inferences based on PCA-SVM achieved an overall accuracy of 80-90% and consistently outperformed PCA-LDA, PCA-RF and PCA-QDA, while in Python BoW-PCA-RF achieved 94.4% accuracy which outperformed BoW-PCA-SVM, BoW-PCA-LDA and BoW-PCA-QDA respectively. ML results from the use of WEKA and Python software tools displayed higher accuracies as compared to the Analysis of molecular variance results. Given the results, SVM and RF algorithms are likely to also be useful in other sequence classification applications, making it a promising tool in genetics and forensic science. The study provides evidence that ML can be utilized as a supplementary tool for forensic genetics casework analysis.


Assuntos
DNA Mitocondrial/genética , Genética Forense/métodos , Aprendizado de Máquina , Linhagem , Grupos Raciais/genética , Humanos , Polimorfismo Genético
7.
Front Genet ; 12: 668574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249090

RESUMO

Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.

8.
Infect Genet Evol ; 92: 104875, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905890

RESUMO

Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.


Assuntos
Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/química , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Humanos
9.
Vaccine ; 39(7): 1111-1121, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33478794

RESUMO

At the beginning of the year 2020, the world was struck with a global pandemic virus referred to as SARS-CoV-2 (COVID-19) which has left hundreds of thousands of people dead. To control this virus, vaccine design becomes imperative. In this study, potential epitopes-based vaccine candidates were explored. Six hundred (600) genomes of SARS-CoV-2 were retrieved from the viPR database to generate CD8+ T-cell, CD4+ T-cell and linear B-cell epitopes which were screened for antigenicity, immunogenicity and non-allergenicity. The results of this study provide 19 promising candidate CD8+ T-cell epitopes that strongly overlap with 8 promising B-cells epitopes. Another 19 CD4+ T-cell epitopes were also identified that can induce IFN-γ and IL-4 cytokines. The most conserved MHC-I and MHC-II for both CD8+ and CD4+ T-cell epitopes are HLA-A*02:06 and HLA-DRB1*01:01 respectively. These epitopes also bound to Toll-like receptor 3 (TLR3). The population coverage of the conserved Major Histocompatibility Complex Human Leukocyte Antigen (HLA) for both CD8+ T-cell and CD4+ T-cell ranged from 65.6% to 100%. The detailed analysis of the potential epitope-based vaccine and their mapping to the complete COVID-19 genome reveals that they are predominantly found in the location of the surface (S) and membrane (M) glycoproteins suggesting the potential involvement of these structural proteins in the immunogenic response and antigenicity of the virus. Since the majority of the potential epitopes are located on M protein, the design of multi-epitope vaccine with the structural protein is highly promising though the whole M protein could also serve as a viable epitope for the development of an attenuated vaccine. Our findings provide a baseline for the experimental design of a suitable vaccine against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Interferon gama , Interleucina-4 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Proteínas da Matriz Viral/imunologia
10.
Behav Brain Res ; 346: 47-65, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29237550

RESUMO

DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.


Assuntos
Metilação de DNA , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Animais , Humanos , Processos Mentais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...