Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 193, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093358

RESUMO

BACKGROUND: Agar is used as a gelling agent that possesses a variety of biological properties; it consists of the polysaccharides agarose and porphyrin. In addition, the monomeric sugars generated after agar hydrolysis can be functionalized for use in biorefineries and biofuel production. The main objective of this study was to develop a sustainable agar hydrolysis process for bioethanol production using nanotechnology. Peroxidase-mimicking Fe3O4-MNPs were applied for agar degradation to generate agar hydrolysate-soluble fractions amenable to Saccharomyces cerevisiae and Escherichia coli during fermentation. RESULTS: Fe3O4-MNP-treated (Fe3O4-MNPs, 1 g/L) agar exhibited 0.903 g/L of reducing sugar, which was 21-fold higher than that of the control (without Fe3O4-MNP-treated). Approximately 0.0181% and 0.0042% of ethanol from 1% of agar was achieved using Saccharomyces cerevisiae and Escherichia coli, respectively, after process optimization. Furthermore, different analytical techniques (FTIR, SEM, TEM, EDS, XRD, and TGA) were applied to validate the efficiency of Fe3O4-MNPs in agar degradation. CONCLUSIONS: To the best of our knowledge, Fe3O4-MNP-treated agar degradation for bioethanol production through process optimization is a simpler, easier, and novel method for commercialization.

2.
Bioresour Technol ; 390: 129911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871744

RESUMO

Nicotinamide mononucleotide (NMN) subsists in all living organisms and has drawn tremendous attention as a nutraceutical and pharmaceutical product for several diseases such as Alzheimer's, cancer, aging, and vascular dysfunction. Here, NMN was produced intracellularly in a high cell density bioreactor using an engineered Escherichiacoli strain via exponential feeding of co-substrates. Fed-batch culture via exponential feeding of co-substrate (glucose) and continuous feeding of substrate (nicotinamide) were performed using different cumulative nicotinamide concentrations. The highest concentration of 19.3 g/L NMN with a dry cell weight of 117 g/L was acquired from a cumulative nicotinamide concentration of 7.2 g/L with a conversion of 98 % from nicotinamide in 28 h. Further, liquid chromatography-mass spectrometry analysis validated the NMN production. This approach will be beneficial in achieving simultaneously low cost and ensuring high quality and quantity of NMN production.


Assuntos
Niacinamida , Mononucleotídeo de Nicotinamida , Reatores Biológicos , Técnicas de Cultura Celular por Lotes , Glucose , NAD
3.
Biotechnol Appl Biochem ; 70(6): 2136-2149, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735977

RESUMO

Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.


Assuntos
Biotecnologia , Biossíntese de Proteínas , Sistema Livre de Células , Biotecnologia/métodos , Biologia Sintética , Indústrias
4.
J Microbiol ; 61(4): 411-421, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37071293

RESUMO

Toxin-antitoxin (TA) systems are widespread in bacteria and archaea plasmids and genomes to regulate DNA replication, gene transcription, or protein translation. Higher eukaryotic and prokaryotic nucleotide-binding (HEPN) and minimal nucleotidyltransferase (MNT) domains are prevalent in prokaryotic genomes and constitute TA pairs. However, three gene pairs (MTH304/305, 408/409, and 463/464) of Methanothermobacter thermautotropicus ΔH HEPN-MNT family have not been studied as TA systems. Among these candidates, our study characterizes the MTH463/MTH464 TA system. MTH463 expression inhibited Escherichia coli growth, whereas MTH464 did not and blocked MTH463 instead. Using site-directed MTH463 mutagenesis, we determined that amino acids R99G, H104A, and Y106A from the R[ɸX]4-6H motif are involved with MTH463 cell toxicity. Furthermore, we established that purified MTH463 could degrade MS2 phage RNA, whereas purified MTH464 neutralized MTH463 activity in vitro. Our results indicate that the endonuclease toxin MTH463 (encoding a HEPN domain) and its cognate antitoxin MTH464 (encoding the MNT domain) may act as a type II TA system in M. thermautotropicus ΔH. This study provides initial and essential information studying TA system functions, primarily archaea HEPN-MNT family.


Assuntos
Antitoxinas , Eucariotos , Nucleotidiltransferases/metabolismo , Antitoxinas/genética , Células Procarióticas , Methanobacteriaceae/genética , Proteínas de Bactérias/metabolismo
5.
ACS Synth Biol ; 10(11): 3055-3065, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34747173

RESUMO

Nicotinamide mononucleotide (NMN), a precursor of NAD+, can be synthesized by the conversion of nicotinamide with the help of nicotinamide phosphoribosyl transferase (NAMPT) via the salvage pathway. NMN has recently gained great attention as an excellent therapeutic option due to its long-term effective pharmacological activities. In this study, we constructed a recombinant strain of Escherichia coli by inserting NAMPT and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and PRPS2 (from Homo sapiens) genes to investigate the effect of PRPS1 and PRPS2 on NMN synthesis. The metabolically engineered strain of E. coli BL21 (DE3) exhibited 1.57 mM NMN production in the presence of Mg2+ and phosphates in batch fermentation studies. For further improvement in NMN production levels, effects of different variables were studied using a response surface methodology approach. A significant increment was achieved with a maximum of 2.31 mM NMN production when supplemented with 1% ribose, 1 mM Mg2+ and phosphate, and 0.5% nicotinamide in the presence of a lactose (1%) inducer. Additionally, insertion of the PRPS1 and PRPS2 genes in the phosphoribosyl pyrophosphate synthesis pathway and individual gene expression studies facilitated a higher NMN production at the intracellular level than the reported studies. The strain exhibited intracellular production of NMN from cheap substrates such as glucose, lactose, and nicotinamide. Hence, the overall optimized process can be further scaled up for the economical production of NMN using a recombinant strain of E. coli BL21 (DE3), which is the future perspective of the current study.


Assuntos
Escherichia coli/metabolismo , Mononucleotídeo de Nicotinamida/biossíntese , Ribose-Fosfato Pirofosfoquinase/metabolismo , Vias Biossintéticas/fisiologia , Glucose/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Niacinamida/metabolismo , Nucleotídeos/metabolismo
6.
Bioresour Technol ; 337: 125490, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320769

RESUMO

In the present study, starch-based potato peel waste biomass (PWB) was utilized as a potential substrate for hydrogen production via dark fermentation by the thermophillic amylase producing strain Parageobacillus thermoglucosidasius KCTC 33548. Supplementation of Fe3O4 nanoparticles (300 mg/L) led to a 4.15-fold increase in hydrogen production as compared to the control. The addition of optimized concentrations of both Fe3O4 nanoparticles (300 mg/L) and L-cysteine (250 mg/L) during hydrogen fermentation using pure starch and PWB generated maximum cumulative hydrogen yields of 167 and 71.9 mL with maximum production rates of 2.81 and 1.26 mL/h, respectively. Further, the correlation between Fe3O4 and the expression of hydrogenase isoforms and the related hydrogenase activity was explored. The possible mechanisms of the action of Fe3O4 on enhanced hydrogenase activity and hydrogen production was elucidated. To our knowledge, there are no such studies reported on enhanced hydrogen production from PWB in a single step.


Assuntos
Nanopartículas , Solanum tuberosum , Bacillaceae , Biomassa , Fermentação , Hidrogênio , Amido/metabolismo
7.
Biotechnol Appl Biochem ; 66(2): 153-162, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30571850

RESUMO

Renewable energy resources are considered to be promising for the development of a sustainable circular economy. Among various alternatives, the microbial route for various biofuels production is quite lucrative. Use of cellulose and lignocellulose for methane, H2 , organic acids, ethanol, and cellulase has been explored a lot in the past few decades. The major leftover or a coproduct of these processes belongs to lignin-an aromatic cross-link polymer and one of the most abundant complex compounds on earth. A successful bioconversion route of lignin into high-value products is highly desirable for biorefinery perspective. It requires a complex set of enzymes/catalysts to decompose lignin through depolymerization and oxygen removal leading to its monomers that can be metabolized by engineered organisms to synthesize muconic acids, polyhydroxyalkanoates (PHAs), methane, and other high-value products. This article will focus on the opportunities and challenges in the bioconversion of lignin and its derivatives into PHAs.


Assuntos
Lignina/metabolismo , Metano/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Ácido Sórbico/análogos & derivados , Microrganismos Geneticamente Modificados/genética , Ácido Sórbico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...