Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687006

RESUMO

The modulation of molecular characteristics in metal-free organic dyes holds significant importance in dye-sensitized solar cells (DSSCs). The D-π-A molecular design, based on the furan moiety (π) in the conjugated spacer between the arylamine (D) and the 2-cyanoacrylic acid (A), was developed and theoretically evaluated for its potential application in DSSCs. Utilizing linear response time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional, different donor and acceptor groups were characterized in terms of the electronic absorption properties of these dyes. All the studied dye sensitizers demonstrate the ability to inject electrons into the semiconductor's conduction band (TiO2) and undergo regeneration through the redox potential triiodide/iodide (I3-/I-) electrode. TDDFT results indicate that the dyes with CSSH anchoring groups exhibit improved optoelectronic properties compared to other dyes. Further, the photophysical properties of all dyes absorbed on a Ti(OH)4 model were explored and reported. The observed results indicate that bidentate chemisorption occurs between dyes and TiO4H5. Furthermore, the HOMO-LUMO energy gaps for almost all dye complexes are significantly smaller than those of the free dyes. This decrease of the HOMO-LUMO energy gaps in the dye complexes facilitates electron excitation, and thus more photons can be adsorbed, guaranteeing larger values of efficiency and short-circuit current density.

2.
Commun Biol ; 5(1): 1012, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153380

RESUMO

Anthocyanins, a major class of flavonoids, are important pigments of grape berries. Despite the recent discovery of the genetic cause underlying the loss of color, the metabolomic and molecular responses are unknown. Anthocyanin quantification among diverse berry color muscadines suggests that all genotypes could produce adequate anthocyanin quantities, irrespective of berry color. Transcriptome profiling of contrasting color muscadine genotypes proposes a potential deficiency that occurs within the anthocyanin transport and/or degradation mechanisms and might cause unpigmented berries. Genome-wide association studies highlighted a region on chromosome-4, comprising several genes encoding glutathione S-transferases involved in anthocyanin transport. Sequence comparison among genotypes reveals the presence of two GST4b alleles that differ by substituting the conserved amino acid residue Pro171-to-Leu. Molecular dynamics simulations demonstrate that GST4b2-Leu171 encodes an inactive protein due to modifications within the H-binding site. Population genotyping suggests the recessive inheritance of the unpigmented trait with a GST4b2/2 homozygous. A model defining colorless muscadines' response to the mutation stimulus, avoiding the impact of trapped anthocyanins within the cytoplasm is established.


Assuntos
Antocianinas , Vitis , Aminoácidos/metabolismo , Antocianinas/genética , Flavonoides/análise , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Estudo de Associação Genômica Ampla , Glutationa/metabolismo , Mutação , Transferases/metabolismo , Vitis/genética , Vitis/metabolismo
3.
Pharmaceuticals (Basel) ; 15(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631438

RESUMO

Autism spectrum disorder (ASD) and associated neurodevelopmental disorders share similar pathogenesis and clinical features. Pathophysiological changes in these diseases are rooted in early neuronal stem cells in the uterus. Several genetic and environmental factors potentially perturb neurogenesis and synaptogenesis processes causing incomplete or altered maturation of the brain that precedes the symptomology later in life. In this review, the impact of several endogenous neuromodulators and pharmacological agents on the foetus during pregnancy, manifested on numerous aspects of neurodevelopment is discussed. Within this context, some possible insults that may alter these modulators and therefore alter their role in neurodevelopment are high-lighted. Sometimes, a particular insult could influence several neuromodulator systems as is supported by recent research in the field of ASD and associated disorders. Dopaminergic hy-pothesis prevailed on the table for discussion of the pathogenesis of schizophrenia (SCH), atten-tion-deficit hyperactivity disorder (ADHD) and ASD for a long time. However, recent cumulative evidence suggests otherwise. Indeed, the neuromodulators that are dysregulated in ASD and comorbid disorders are as diverse as the causes and symptoms of this disease. Additionally, these neuromodulators have roles in brain development, further complicating their involvement in comorbidity. This review will survey the current understanding of the neuromodulating systems to serve the pharmacological field during pregnancy and to minimize drug-related insults in pa-tients with ASD and associated comorbidity disorders, e.g., SCH or ADHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...