Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17012-17027, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645322

RESUMO

In this work, we developed a technology that enables rapid deposition of biomimetic composite films onto natural enamel slices (known as biotemplates). These films are composed of polydopamine (PDA) and nanocrystalline carbonate-substituted hydroxyapatite (nano-cHAp) that have been functionalized with amino acid l-Arginine. We utilized atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM) combined with infrared (IR) synchrotron to achieve nanoscale spatial resolution for both IR absorption and topography analyses. This combined analytical modality allowed us to understand how morphology connects to local changes in the chemical environment on the biotemplate surface during the deposition of the bioinspired coating. Our findings revealed that when using the proposed technology and after the deposition of the first PDA layer, the film formed on the enamel surface nearly covers the entire surface of the specimen whose thickness is larger on the surface of the emerging enamel prisms. Calculation of the crystallinity index for the biomimetic layer showed a multiple increase compared with natural enamel. This indicates regular and dense aggregation of nano-cHAp into larger crystals, imitating the morphology of natural enamel rods. The microhardness of the formed PDA-based biomimetic layer mineralized with nano-cHAp functionalized with amino acid l-Arginine deposited on natural enamel was practically the same as that of natural enamel. The characterization of nano-cHAp-amino acid-PDA layers using IR and Raman microspectroscopy showed that l-arginine acts as a conjunction agent in the formation of mineralized biomimetic composite coatings. The uniformity of the mechanisms of PDA layer formation under different deposition conditions and substrate types allows for the formation of coatings regardless of the macro- and micromorphology of the template. Therefore, the results obtained in this work have a high potential for future clinical applications in dental practice.

2.
Biomimetics (Basel) ; 7(3)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997431

RESUMO

In this report, we demonstrated the formation of a biomimetic mineralizing layer obtained on the surface of dental enamel (biotemplate) using bioinspired nanocrystalline carbonate-substituted calcium hydroxyapatite (ncHAp), whose physical and chemical properties are closest to the natural apatite dental matrix, together with a complex of polyfunctional organic and polar amino acids. Using a set of structural, spectroscopy, and advanced microscopy techniques, we confirmed the formation of a nanosized ncHAp-based mineralized layer, as well as studying its chemical, substructural, and morphological features by means of various methods for the pretreatment of dental enamel. The pretreatment of a biotemplate in an alkaline solution of Ca(OH)2 and an amino acid booster, together with the executed subsequent mineralization with ncHAp, led to the formation of a mineralized layer with homogeneous micromorphology and the preferential orientation of the ncHAp nanocrystals. It was shown that the homogeneous crystallization of hydroxyapatite on the biotemplate surface and binding of individual nanocrystals and agglomerates into a single complex by an amino acid booster resulted in an increase (~15%) in the nanohardness value in the enamel rods area, compared to that of healthy natural enamel. Obtaining a similar hierarchy and cleavage characteristics as natural enamel in the mineralized layer, taking into account the micromorphological features of dental tissue, is an urgent problem for future research.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25022502

RESUMO

Air-stable and thermal-stable lead telluride quantum dot was successfully prepared on glass substrate by inert gas condensation (IGC) method. Argon (Ar) is the inert gas used during deposition process with a constant flow rate of 3 × 10(-3)Torr. The effect of heat-treatment process at different times was studies for structure, optical and electrical properties for nanocrystalline thin films. The structures of the as deposited and heat-treated films were investigated using grazing incident in-plane X-ray diffraction (GIIXD). The GIIXD pattern showed nanostructure face centered cubic structure of PbTe thin films. The energy dispersive X-ray analysis (EDX) of as deposited PbTe thin film was carried out and showed that the atomic ratio of Pb/Te was 24/76. The particle size of the as deposited PbTe film and after stored it in an unhumid atmosphere are 6.8 ± 0.3 nm and 7.2 ± 0.3 nm respectively as estimated form TEM image (i.e. in the same level of particle size). However, the particle size was changed to be 11.8 ± 0.3 nm after heat-treated for 5h at 473K. These particle size values of PbTe thin film are smaller than its Bohr radius. The estimated value of optical band gap Eg decreased from 1.71 eV for the as deposited film to 1.62 eV for film heat-treated (5 h at 473K). The dc electrical conductivity is increased with raising temperature in the range (303-473K) for all thin films under investigation. The deduced activation energy decreased from 0.222 eV for as deposited sample to 0.125 eV after heat-treated at 473K for 5 h.


Assuntos
Chumbo/química , Nanoestruturas/química , Pontos Quânticos/química , Telúrio/química , Cristalização/métodos , Condutividade Elétrica , Temperatura Alta , Tamanho da Partícula , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...