Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(1): 3-17, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36538590

RESUMO

Metallophilic interactions between closed-shell metal centers are exemplified by d10 ions, with Au(I) aurophilic interactions as the archetype. Such an interaction extends to d8 species, and examples involving Au(III) are prevalent. Conversely, Ag(III) argentophilic interactions are uncommon. Here, we identify argentophilic interactions in silver corroles, which are authentic Ag(III) species. The crystal structure of a monomeric silver corrole is a dimer in the solid state, and the macrocycle exhibits an atypical domed conformation. In order to evaluate whether this represents an authentic metallophilic interaction or a crystal-packing artifact, the analogous cofacial or "pacman" corrole was prepared. The conformation of the monomer was recapitulated in the silver pacman corrole, exhibiting a short 3.67 Å distance between metal centers and a significant compression of the xanthene backbone. Theoretical calculations support the presence of a rare Ag(III)···Ag(III) argentophilic interaction in the pacman complex.


Assuntos
Porfirinas , Prata , Prata/química , Porfirinas/química , Conformação Molecular
2.
Inorg Chem ; 61(50): 20288-20298, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459671

RESUMO

The electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. The ground state of these compounds is best described as an antiferromagnetically coupled Cu(II) corrole radical cation. In coordinating solvents, these molecules become paramagnetic, and this is often accompanied by a color change. The underlying chemistry of these solvent-induced properties is currently unknown. Here, we show that a coordinating solvent, such as pyridine, induces a change in the ground spin state from an antiferromagnetically coupled Cu(II) corrole radical cation to a ferromagnetically coupled triplet. Over time, the triplet reacts to produce a species with spectral signatures that are characteristic of the one-electron-reduced Cu(II) corrole. These observations account for the solvent-induced paramagnetism and the associated color changes that have been observed for copper corroles in coordinating solvents.


Assuntos
Cobre , Porfirinas , Cobre/química , Solventes , Porfirinas/química , Elétrons
3.
Inorg Chem ; 61(31): 12308-12317, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892197

RESUMO

The monoanionic tetrapyrrolic macrocycle B,C-tetradehydrocorrin (TDC) resides chemically between corroles and corrins. This chemical space remains largely unexplored due to a lack of reliable synthetic strategies. We now report the preparation and characterization of Co(II)- and Ni(II)-metalated TDC derivatives ([Co-TDC]+ and [Ni-TDC]+, respectively) with a combination of crystallographic, electrochemical, computational, and spectroscopic techniques. [Ni-TDC]+ was found to undergo primarily ligand-centered electrochemical reduction, leading to hydrogenation of the macrocycle under cathodic electrolysis in the presence of acid. Transient absorption (TA) spectroscopy reveals that [Ni-TDC]+ and the two-electron-reduced [Ni-TDC]- possess long-lived excited states, whereas the excited state of singly reduced [Ni-TDC] exhibits picosecond dynamics. The Co(I) compound [Co-TDC] is air stable, highlighting the notable property of the TDC ligand to stabilize low-valent metal centers in contradistinction to other tetrapyrroles such as corroles, which typically stabilize metals in higher oxidation states.

4.
Chem Commun (Camb) ; 56(39): 5247-5250, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32270146

RESUMO

Pnictogen complexes are ideal for mediating multi-electron chemical reactions in two-electron steps. We report an Sb(v) bis-µ-oxo corrole that photochemically oxidises the C-H bonds of organic substrates. In the case of toluene, the substrate is oxidised to benzaldehyde, a rare example of a four-electron photoreaction.


Assuntos
Antimônio/química , Porfirinas/química , Benzaldeídos/química , Elétrons , Modelos Moleculares , Estrutura Molecular , Oxirredução , Processos Fotoquímicos
5.
Inorg Chem ; 58(12): 7958-7968, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31145599

RESUMO

An electron-deficient nickel porphyrin complex undergoes facile ring reduction to form a nickel isobacteriochlorin complex under hydrogen evolution conditions. Spectroscopic experiments indicate that the reduced nickel porphyrin undergoes subsequent reduction and protonation to form a phlorin anion rather than a metal hydride, demonstrating that the key initial proton-coupled electron transfer step is directed toward the ligand versus the metal. The phlorin anion facilely converts to the isobacteriochlorin in the presence of two-electron and three-proton equivalents. Cyclic voltammetry (CV) and spectroscopic experiments reveal that the four-electron, four-proton electrochemical reduction of nickel porphyrin to isobacteriochlorin occurs promptly in the presence of the strong proton donor tosic acid, followed by hydrogen evolution reaction (HER) catalysis at slightly more negative potentials. CVs of independently synthesized Ni isobacteriochlorin show a catalytic HER at the same potentials as those observed for the HER in CVs of the Ni porphyrin. We find that, under strongly acidic conditions, the HER catalysis arises from conversion of the Ni isobacteriochlorin into a nickel-containing, catalytically active electrode-adsorbed species. These results show that Ni porphyrin converts to Ni isobacteriochlorin under HER catalysis conditions via a ligand-based PCET process and that it is the isobacteriochlorin complex which gives rise to an active HER catalysis.

6.
J Am Chem Soc ; 140(33): 10412-10415, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30067352

RESUMO

Rh2-catalyzed C-H amination is a powerful method for nitrogenating organic molecules. While Rh2 nitrenoids are often invoked as reactive intermediates in these reactions, the exquisite reactivity and fleeting lifetime of these species has precluded their observation. Here, we report the photogeneration of a transient Rh2 nitrenoid that participates in C-H amination. The developed approach to Rh2 nitrenoids, based on photochemical cleavage of N-Cl bonds in N-chloroamido ligands, has enabled characterization of a reactive Rh2 nitrenoid by mass spectrometry and transient absorption spectroscopy. We anticipate that photogeneration of metal nitrenoids will contribute to the development of C-H amination catalysis by providing tools to directly study the structures of these critical intermediates.

7.
Inorg Chem ; 57(9): 5333-5342, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29658708

RESUMO

Main-group p-block metals are ideally suited for mediating two-electron reactions because they cycle between M n and M n+2 redox states, as the one-electron state is thermodynamically unstable. Here, we report the synthesis and structure of an SbIII corrole and its SbVX2 (X = Cl, Br) congeners. SbIII sits above the corrole ring, whereas SbV resides in the corrole centroid. Electrochemistry suggests interconversion between the SbIII and SbVX2 species. TD-DFT calculations indicate a HOMO → LUMO+2 parentage for excited states in the Soret spectral region that have significant antibonding character with respect to the Sb-X fragment. The photochemistry of 2 and 3 in THF is consistent with the computational results, as steady-state photolysis at wavelengths coincident with the Soret absorption of SbVX2 corrole lead to its clean conversion to the SbIII corrole. This ability to photoactivate the Sb-X bond reflects the proclivity of the pnictogens to rely on the PnIII/V couple to drive the two-electron photochemistry of M-X bond activation, an essential transformation needed to develop HX-splitting cycles.

8.
Angew Chem Int Ed Engl ; 55(6): 2176-80, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26836345

RESUMO

The ground state electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. Computational studies formulate neutral Cu corroles with an antiferromagnetically coupled Cu(II) corrole radical cation ground state. X-ray photoelectron spectroscopy, EPR, and magnetometry support this assignment. For comparison, Cu(II) isocorrole and [TBA][Cu(CF3)4] were studied as authentic Cu(II) and Cu(III) samples, respectively. In addition, the one-electron reduction and one-electron oxidation processes are both ligand-based, demonstrating that the Cu(II) centre is retained in these derivatives. These observations underscore ligand non-innocence in copper corrole complexes.

9.
Proc Natl Acad Sci U S A ; 113(3): 485-92, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26655344

RESUMO

The development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanced by incorporating proton relays into the molecular electrocatalysts. Herein nickel porphyrin electrocatalysts with and without an internal proton relay are investigated to elucidate the hydrogen evolution mechanisms and thereby enable the design of more effective catalysts. Density functional theory calculations indicate that electrochemical reduction leads to dearomatization of the porphyrin conjugated system, thereby favoring protonation at the meso carbon of the porphyrin ring to produce a phlorin intermediate. A key step in the proposed mechanisms is a thermodynamically favorable PCET reaction composed of intramolecular electron transfer from the nickel to the porphyrin and proton transfer from a carboxylic acid hanging group or an external acid to the meso carbon of the porphyrin. The C-H bond of the active phlorin acts similarly to the more traditional metal-hydride by reacting with acid to produce H2. Support for the theoretically predicted mechanism is provided by the agreement between simulated and experimental cyclic voltammograms in weak and strong acid and by the detection of a phlorin intermediate through spectroelectrochemical measurements. These results suggest that phlorin species have the potential to perform unique chemistry that could prove useful in designing more effective electrocatalysts.

10.
J Am Chem Soc ; 137(20): 6472-5, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25950146

RESUMO

Halogen photoelimination reactions constitute the oxidative half-reaction of closed HX-splitting energy storage cycles. Here, we report high-yielding, endothermic Cl2 photoelimination chemistry from mononuclear Ni(III) complexes. On the basis of time-resolved spectroscopy and steady-state photocrystallography experiments, a mechanism involving ligand-assisted halogen elimination is proposed. Employing ancillary ligands to promote elimination offers a strategy to circumvent the inherently short-lived excited states of 3d metal complexes for the activation of thermodynamically challenging bonds.


Assuntos
Cloretos/química , Níquel/química , Compostos Organometálicos/química , Modelos Moleculares , Conformação Molecular , Processos Fotoquímicos , Termodinâmica
11.
J Phys Chem B ; 119(24): 7422-9, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25635708

RESUMO

The encapsulation of peroxide dianion by hexacarboxamide cryptand provides a platform for the study of electron transfer of isolated peroxide anion. Photoinitiated electron transfer (ET) between freely diffusing Ru(bpy)3(2+) and the peroxide dianion occurs with a rate constant of 2.0 × 10(10) M(-1) s(-1). A competing electron transfer quenching pathway is observed within an ion pair. Picosecond transient spectroscopy furnishes a rate constant of 1.1 × 10(10) s(-1) for this first-order process. A driving force dependence for the ET rate within the ion pair using a series of Ru(bpy)3(2+) derivatives allows for the electronic coupling and reorganization energies to be assessed. The ET reaction is nonadiabatic and dominated by a large inner-sphere reorganization energy, in accordance with that expected for the change in bond distance accompanying the conversion of peroxide dianion to superoxide anion.


Assuntos
Peróxidos/química , Ânions/química , Transporte de Elétrons , Estrutura Molecular , Compostos Organometálicos/química , Processos Fotoquímicos , Teoria Quântica
12.
Chem Sci ; 6(2): 917-922, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560177

RESUMO

Photoactivation of M-X bonds is a challenge for photochemical HX splitting, particularly with first-row transition metal complexes because of short intrinsic excited state lifetimes. Herein, we report a tandem H2 photocycle based on combination of a non-basic photoredox phosphine mediator and nickel metal catalyst. Synthetic studies and time-resolved photochemical studies have revealed that phosphines serve as photochemical H-atom donors to Ni(ii) trihalide complexes to deliver a Ni(i) centre. The H2 evolution catalytic cycle is closed by sequential disproportionation of Ni(i) to afford Ni(0) and Ni(ii) and protolytic H2 evolution from the Ni(0) intermediate. The results of these investigations suggest that H2 photogeneration proceeds by two sequential catalytic cycles: a photoredox cycle catalyzed by phosphines and an H2-evolution cycle catalyzed by Ni complexes to circumvent challenges of photochemistry with first-row transition metal complexes.

13.
Proc Natl Acad Sci U S A ; 111(42): 15001-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25298534

RESUMO

The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer-electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...