Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 166(2-3): 782-7, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19147282

RESUMO

The treatability of a copper mine wastewater, including heavy metals, AMD, as well as flotation chemicals, with Fenton process was investigated. Fenton process seems advantageous for this treatment, because of Fe(2+) content and low pH of AMD. First, optimum Fe(2+) condition under constant H(2)O(2) was determined, and initial Fe(2+) content of AMD was found sufficient (120 mg/L for removal of chemical oxygen demand (COD) of 6125 mg/L). In the second step, without any additional Fe(2+), optimum H(2)O(2) dosage was determined as 40 mg/L. Fe(2+)/H(2)O(2) molar ratio of 1.8 was enough to achieve the best treatment performance. In all trials, initial pH of AMD was 4.8 and pH adjustment was not performed. Utilization of existing pH and Fe(2+), low H(2)O(2) requirements, and up to 98% treatment performances in COD, turbidity, color, Cu(2+), Zn(2+) made the proposed treatment system promising. Since the reaction occurs stepwise, a two-step kinetic model was applied and calculated theoretical maximum removal rate was consistent to experimental one, which validates the applied model. For the optimum molar ratio (1.8), 140 mL/L sludge of high density (1.094 g/mL), high settling velocity (0.16 cm/s) with low specific resistance (3.15 x 10(8)m/kg) was obtained. High reaction rates and easily dewaterable sludge characteristics also made the proposed method advantageous.


Assuntos
Cobre/química , Peróxido de Hidrogênio/química , Resíduos Industriais/prevenção & controle , Ferro/química , Mineração , Poluentes Químicos da Água/química , Ácidos , Concentração de Íons de Hidrogênio , Metais Pesados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...