Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(24): 25625-25637, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911754

RESUMO

The addition of nanoparticles in amine solutions to produce a stable amine-based nanofluid provides a high surface area for absorption and improves the absorption rate. In this work, nanofluids were prepared by dispersing graphene oxide (GO) in monoethanolamine (MEA) and ethylenediamine (EDA) solutions for adsorption of carbon dioxide (CO2) to further improve their absorption performance by providing more reaction sites on the GO framework. GO was synthesized using the modified Hummers method and characterized for physicochemical properties using SEM, EDS, FTIR, Raman analysis, and TGA. The FTIR spectra for the GO nanoparticles before absorption showed peaks attributed to C-C, H-C, and C-O bonding. After the absorption experiments, the FTIR spectra of GO showed peaks due to C-O-NH2, N-O-N, and N-H bonding. The BET analysis further confirmed the decrease in the surface area, pore volume, and pore diameter of the GO recovered from the nanofluids after the CO2 experiment, indicating an interaction between GO and amine molecules. The absorption process of CO2 by the nanofluid was performed in a custom-made pressure chamber whereby the CO2 gas was in direct contact with the absorption fluids. The obtained adsorption rate constant (k) for the reaction between CO2 and 30% MEA and EDA solutions was 0.113 and 0.131, respectively. Upon addition of 0.2 mg/mL GO in the base solution, k increased to 0.16854 and 0.17603 for the MEA and EDA nanofluids, respectively. The proposed mechanism involves GO nanoparticles interacting with the amine groups through the oxygen-rich groups of GO. This results in the formation of a zwitterion that readily reacts with CO2, resulting in a carbamate.

2.
Chemosphere ; 360: 142347, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759802

RESUMO

Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.


Assuntos
Corantes , Destilação , Membranas Artificiais , Indústria Têxtil , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Destilação/métodos , Corantes/química , Corantes/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Resíduos Industriais
3.
Membranes (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984704

RESUMO

In this study, hydrophobic functionalized carbon nanotubes (fCNTs) and silica nanoparticles (fSiO2NPs) were incorporated into polyvinylidene fluoride (PVDF) flat-sheet membranes to improve their performance in membrane distillation (MD). The performance of the as-synthesized membranes was evaluated against commercial reference polytetrafluoroethylene (PTFE) flat-sheet membranes. The water contact angle (WCA) and liquid entry pressure (LEP) of the PVDF membrane were compromised after incorporation of hydrophilic pore forming polyvinylpyrrolidone (PVP). These parameters were key in ensuring high salt rejections in MD processes. Upon incorporation of fCNTS and fSiO2NPs, WCA and LEP improved to 103.61° and 590 kPa, respectively. Moreover, the NP additives enhanced membrane surface roughness. Thus, an increase in membrane roughness improved WCA and resistance to membrane wetting. High salt rejection (>99%) and stable fluxes (39.77 kg m-2 h-1) were recorded throughout a 3 h process evaluation where 3.5 wt% NaCl solution was used as feed. These findings were recorded at feed temperature of 60 ℃. Evidently, this study substantiated the necessity of high feed temperatures towards high rates of water recovery.

4.
Membranes (Basel) ; 12(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36005677

RESUMO

In this study, Ag and Pd bimetallic nanoparticles were generated in situ in polyethersulfone (PES) dope solutions, and membranes were fabricated through a phase inversion method. The membranes were characterized for various physical and chemical properties using techniques such as FTIR, SEM, AFM, TEM, EDS, and contact angle measurements. The membranes were then evaluated for their efficiency in rejecting EOCs and resistance to protein fouling. TEM micrographs showed uniform distribution of Ag/Pd nanoparticles within the PES matrix, while SEM images showed uniform, fingerlike structures that were not affected by the presence of embedded nanoparticles. The presence of Ag/Pd nanoparticles resulted in rougher membranes. There was an increase in membrane hydrophilicity with increasing nanoparticles loading, which resulted in improved pure water permeability (37−135 Lm2h−1bar−1). The membranes exhibited poor salt rejection (<15%), making them less susceptible to flux decline due to concentration polarization. With a mean pore radius of 2.39−4.70 nm, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen (up to 40%), with size exclusion being the major removal mechanism. Modifying the membranes with Ag/Pd nanoparticles improved their antifouling properties, making them a promising innovation for the treatment of pharmaceutical wastewater.

5.
J Environ Manage ; 301: 113922, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731960

RESUMO

While water is a key resource required to sustain life, freshwater sources and aquifers are being depleted at an alarming rate. As a mitigation strategy, saline water desalination is commonly used to supplement the available water resources beyond direct water supply. This is achieved through effective advanced water purification processes enabled to handle complex matrix of saline wastewater. Membrane technology has been extensively evaluated for water desalination. This includes the use of reverse osmosis (RO) (the most mature membrane technology for desalination), pervaporation (PV), electrodialysis (ED), membrane distillation (MD), and membrane crystallization (MCr). Though nanofiltration (NF) is not mainly applied for desalination purposes, it is included in the reviewed processes because of its ability to reach 90% salt rejection efficiency for water softening. However, its comparison with other technologies is not provided since NF cannot be used for removal of NaCl during desalination. Remarkably, membrane processes remain critically affected by several challenges including membrane fouling. Moreover, capital expenditure (CAPEX) and operating expenditure (OPEX) are the key factors influencing the establishment of water desalination processes. Therefore, this paper provides a concise and yet comprehensive review of the membrane processes used to desalt saline water. Furthermore, the successes and failures of each process are critically reviewed. Finally, the CAPEX and OPEX of these water desalination processes are reviewed and compared. Based on the findings of this review, MD is relatively comparable to RO in terms of process performance achieving 99% salt rejections. Also, high salt rejections are reported on ED and PV. The operation and maintenance (O&M) costs remain lower in ED. Notably, the small-scale MD OPEX falls below that of RO. However, the large-scale O&M in MD is rarely reported due to its slow industrial growth, thus making RO the most preferred in the current water desalination markets.


Assuntos
Água do Mar , Purificação da Água , Custos e Análise de Custo , Osmose , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...