Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15077, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636296

RESUMO

The complex interactions between subclinical changes to hepatic extracellular matrix (ECM) in response to injury and tumor-associated macrophage microenvironmental cues facilitating metastatic cell seeding remain poorly understood. This study implements a combined computational modeling and experimental approach to evaluate tumor growth following hepatic injury, focusing on ECM remodeling and interactions with local macrophages. Experiments were performed to determine ECM density and macrophage-associated cytokine levels. Effects of ECM remodeling along with macrophage polarization on tumor growth were evaluated via computational modeling. For primary or metastatic cells in co-culture with macrophages, TNF-α levels were 5× higher with M1 vs. M2 macrophages. Metastatic cell co-culture exhibited 10× higher TNF-α induction than with primary tumor cells. Although TGFß1 induction was similar between both co-cultures, levels were slightly higher with primary cells in the presence of M1. Simulated metastatic tumors exhibited decreased growth compared to primary tumors, due to high local M1-induced cytotoxicity, even in a highly vascularized microenvironment. Experimental analysis combined with computational modeling may provide insight into interactions between ECM remodeling, macrophage polarization, and liver tumor growth.


Assuntos
Simulação por Computador , Matriz Extracelular/patologia , Neoplasias Hepáticas/secundário , Fígado/lesões , Macrófagos/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Feminino , Fígado/patologia , Neoplasias Hepáticas/patologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Carga Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
2.
J Theor Biol ; 469: 47-60, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30836073

RESUMO

The anti-tumor activity of the immune system is increasingly recognized as critical for the mounting of a prolonged and effective response to cancer growth and invasion, and for preventing recurrence following resection or treatment. As the knowledge of tumor-immune cell interactions has advanced, experimental investigation has been complemented by mathematical modeling with the goal to quantify and predict these interactions. This succinct review offers an overview of recent tumor-immune continuum modeling approaches, highlighting spatial models. The focus is on work published in the past decade, incorporating one or more immune cell types and evaluating immune cell effects on tumor progression. Due to their relevance to cancer, the following immune cells and their combinations are described: macrophages, Cytotoxic T Lymphocytes, Natural Killer cells, dendritic cells, T regulatory cells, and CD4+ T helper cells. Although important insight has been gained from a mathematical modeling perspective, the development of models incorporating patient-specific data remains an important goal yet to be realized for potential clinical benefit.


Assuntos
Comunicação Celular , Linfócitos/patologia , Modelos Biológicos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...