Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(9): e2316299121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381786

RESUMO

The ability of thin materials to shape-shift is a common occurrence that leads to dynamic pattern formation and function in natural and man-made structures. However, harnessing this concept to rationally design inorganic structures at the nanoscale has remained far from reach due to a lack of fundamental understanding of the essential physical components. Here, we show that the interaction between organic ligands and the nanocrystal surface is responsible for the full range of chiral shapes seen in colloidal nanoplatelets. The adsorption of ligands results in incompatible curvatures on the top and bottom surfaces of the NPL, causing them to deform into helicoïds, helical ribbons, or tubes depending on the lateral dimensions and crystallographic orientation of the NPL. We demonstrate that nanoplatelets belong to the broad class of geometrically frustrated assemblies and exhibit one of their hallmark features: a transition between helicoïds and helical ribbons at a critical width. The effective curvature [Formula: see text] is the single aggregate parameter that encodes the details of the ligand/surface interaction, determining the nanoplatelets' geometry for a given width and crystallographic orientation. The conceptual framework described here will aid the rational design of dynamic, chiral nanostructures with high fundamental and practical relevance.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630961

RESUMO

We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial inhomogeneities in the thin film emission. This was drastically different at the band-edge (∼550 nm, sharp peaks) than in the emission tail (∼568 nm, continuum of emission). We are able to observe regions of the film at the micrometer scale where emission is dominated by excitons, in between regions of trap emission. Varying the density of absorbed photons by the MAPbBr3 thin films, two-color fluorescence lifetime imaging microscopy unraveled the emission dynamics: a fast, resolution-limited (∼200 ps) monoexponential tangled with a stretched exponential decay. We associate the first to the relaxation of excitons and the latter to trap emission dynamics. The obtained stretching exponents can be interpreted as the result of a two-dimensional electron diffusion process: Förster resonant transfer mechanism. Furthermore, the non-vanishing fast monoexponential component even in the tail of the MAPbBr3 emission indicates the subsistence of localized excitons. Finally, we estimate the density of traps in MAPbBr3 thin films prepared using the anti-solvent method at n∼1017 cm-3.

3.
Chem Sci ; 13(17): 4977-4983, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35655873

RESUMO

Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.

4.
Nanoscale ; 14(15): 5769-5781, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35352077

RESUMO

We report the first doping of crystalline methyl-ammonium lead bromide perovskite (MAPbBr3) films with CdSe/CdZnS core/shell quantum dots (QDs), using a soft-chemistry approach that preserves their high quantum yield and other remarkable luminescence properties. Our approach produces MAPbBr3 films of around 100 nm thickness, doped at volume ratios between 0.01 and 1% with colloidal CdSe/CdZnS QDs whose organic ligands were exchanged with halide ions to allow for close contact between the QDs and the perovskite matrix. Ensemble photoluminescence (PL) measurements demonstrate the retained emission of the QDs after incorporation into the MAPbBr3 matrix. Photoluminescence excitation (PLE) spectra exhibit signatures of wavelength-dependent coupling between the CdSe/CdZnS QDs and the MAPbBr3 matrix, i.e., a transfer of charges from matrix to QD, which increases the QD luminescence by up to 150%, or from QD to matrix. Spatially-resolved PL experiments reveal a strong correlation between the positions of QDs and an enhancement of the PL signal of the matrix. Lifetime imaging of the doped films furthermore shows that the emission lifetime of MAPbBr3 is slower in the vicinity of QDs, which, in combination with the increased PL signal of the matrix, suggests that QDs can act as local nucleation seeds that improve the crystallinity of MAPbBr3, thus boosting its emission quantum yield. Luminescence antibunching measurements provide clear evidence of single-photon emission from individual QDs in perovskite. Finally, the analysis of blinking statistics indicates an improvement of the photostability of individual QDs in perovskite as compared to bare CdSe/CdZnS QDs. At high CdSe/CdZnS QD doping levels, this work thus opens a route to hybrid solar concentrators for visible-light harvesting and hybrid-based LEDs, while a low degree of doping could yield hybrid single-photon sources than can be embedded in field-effect devices for single-charge control, which would allow the construction of nanophotonic devices via low-cost solution-processing techniques as an alternative to solid-state quantum dots.

5.
J Phys Chem Lett ; 13(1): 393-399, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34985898

RESUMO

Using femtosecond transient absorption (fs-TA), we investigate the hot exciton relaxation dynamics in strongly confined lead iodide perovskite nanoplatelets (NPLs). The large quantum and dielectric confinement leads to discrete excitonic transitions and strong Stark features in the TA spectra. This prevents the use of conventional relaxation analysis methods extracting the carrier temperature or measuring the buildup of the band-edge bleaching. Instead, we show that the TA spectral line shape near the band-edge reflects the state of the system, which can be used to probe the exciton cooling dynamics. The ultrafast hot exciton relaxation in one- to three- monolayer-thick NPLs confirms the absence of intrinsic phonon bottleneck. However, excitation fluence-dependent measurements reveal a hot phonon bottleneck effect, which is found to be independent of the nature of the internal cations but strongly affected by the ligands and/or sample surface state. Together, these results suggest a role of the surface ligands in the cooling process.

6.
ACS Appl Mater Interfaces ; 13(49): 59450-59459, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34855346

RESUMO

CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.

7.
Nanoscale ; 13(46): 19578-19586, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807212

RESUMO

We explore the effect of the shell thickness on the time response of CdS/CdSe/CdS spherical quantum wells (SQWs) nanoscintillators under X-ray excitation. We first compare the spectral and timing properties under low and intense optical excitation, which allows us to identify the complex temporal and spectral response of the highly excited species. We find that a defect-induced delayed luminescence appears at large sizes. Under pulsed X-ray excitation, an analysis of the scintillation decay time reveals that multiexcitons are generated, similarly to the intense optical excitation and that the shell thickness does not change the fraction of fast component to a large extent. We performed a two-step simulation of the energy relaxation in the SQWs which reveals that large-size SQWs favor a very high number of excitations per particle, which, however, is counterbalanced by increased Auger quenching, rendering large SQWs less effective regarding the timing performance.

8.
Chem Commun (Camb) ; 57(93): 12512-12515, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751280

RESUMO

We report a seed-mediated synthesis strategy to control the size of gold nanoparticles at the atomic scale in the 2-5 nm size range. Starting from 2 nm seeds, a regrowth in organic solvent with a designed amount of precursor can achieve in a predictive fashion a precise mean size with a 0.3 nm resolution. We show that these monodisperse nanoparticles assemble into a 2D hexagonal lattice over a distance that can span tens of micrometers.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Solventes/química , Difração de Raios X
9.
Phys Chem Chem Phys ; 23(39): 22750-22759, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34608907

RESUMO

We report the synthesis and optical characterization of fully inorganic gradient-shell CdSe/CdZnS nanocrystals (NCs) with high luminescence quantum yield (QY, 50%), which were obtained by replacing native oleic-acid (OA) ligands with halide ions (Cl-and Br-). Absorption, photoluminescence excitation (PLE) and photoluminescence (PL) spectra in solution were unaffected by the ligand-exchange procedure. The halide-capped NCs were stable in solution for several weeks without modification of their PL spectra; once deposited as unprotected thin films and exposed to air, however, they did show signs of aging which we attribute to increasing heterogeneity of (effective) NC size. Time-resolved PL measurements point to the existence of four distinct emissive states, which we attribute to neutral, singly-charged and multi-excitonic entities. We found that the relative contribution of these four components to the overall PL decay is modified by the OA-to-halide ligand exchange, while the excited-state lifetimes themselves, surprisingly, remain largely unaffected. The high PL quantum yield of the halide-capped NCs allowed observation of single particle blinking and photon-antibunching; one surprising result was that aging processes that occurs during the first few days after deposition on glass seemed to offer a certain increased protection against photobleaching. These results suggest that halide-capped CdSe/CdZnS NCs are promising candidates for incorporation into opto-electronic devices, based on, for example, hybrid perovskite matrices, which require eliminating the steric hindrance and electronic barrier of bulky organic ligands to ensure efficient coupling.

10.
Nanoscale ; 13(18): 8639-8647, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33942037

RESUMO

The influence of ligands on the low frequency vibration of cadmium selenide colloidal nanoplatelets of different thicknesses is investigated using resonant low frequency Raman scattering. The strong vibration frequency shifts induced by ligand modifications as well as sharp spectral linewidths make low frequency Raman scattering a tool of choice to follow ligand exchange as well as the nano-mechanical properties of the NPLs, as evidenced by a carboxylate to thiolate exchange study. Apart from their molecular weight, the nature of the ligands, such as the sulfur to metal bond of thiols, induces a modification of the NPLs as a whole, increasing the thickness by one monolayer. Moreover, as the weight of the ligands increases, the discrepancy between the mass-load model and the experimental measurements increase. These effects are all the more important when the number of layers is small and can only be explained by a modification of the longitudinal sound velocity. This modification takes its origin in a change of the lattice structure of the NPLs, that reflects on their elastic properties. These nanobalances are finally used to characterize ligand affinity with the surface using binary thiol mixtures, illustrating the potential of low frequency Raman scattering to finely characterize nanocrystal surfaces.

11.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977504

RESUMO

We study the hot charge carrier relaxation process in weakly confined hybrid lead iodide perovskite colloidal nanostructures, FAPbI3 (FA = formaminidium), using femtosecond transient absorption (TA). We compare the conventional analysis method based on the extraction of the carrier temperature (Tc) by fitting the high-energy tail of the band-edge bleach with a global analysis method modeling the continuous evolution of the spectral lineshape in time using a simple sequential kinetic model. This practical approach results in a more accurate way to determine the charge carrier relaxation dynamics. At high excitation fluence (density of charge carriers above 1018 cm-3), the cooling time increases up to almost 1 ps in thick nanoplates (NPs) and cubic nanocrystals (NCs), indicating the hot phonon bottleneck effect. Furthermore, Auger heating resulting from the multi-charge carrier recombination process slows down the relaxation even further to tens and hundreds of picoseconds. These two processes could only be well disentangled by analyzing simultaneously the spectral lineshape and amplitude evolution.

12.
ACS Omega ; 3(6): 6199-6205, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458802

RESUMO

We present a novel route for the synthesis of zinc blende CdSe nanoplatelets (NPLs) that exclude the use of short-chain alkyl carboxylates. CdSe NPLs obtained without acetates are shown to be extremely asymmetric and rectangular. The effects of several experimental parameters such as the nature of cadmium carboxylates, selenium precursors, and precursor concentration ratios are studied. Our experiments, together with complementary small-/wide-angle X-ray scattering results, show that the formation of NPLs is not related to soft templating. We discuss our findings in regard to several other formation mechanisms of NPLs, which have appeared recently in the literature, and propose that the steric hindrance caused by ligand packing exerts an influence on the growth and geometry of two-dimensional NPLs.

13.
Nanoscale ; 9(19): 6551-6557, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28470265

RESUMO

Resonant acoustic modes from ultrathin CdS colloidal nanoplatelets (NPLs) are probed under high pressure using low frequency Raman spectroscopy. In particular we focus on the characterization of the recently evidenced mass load effect that is responsible for a significant downshift of the NPL breathing frequency due to the inert mass of organic ligands. We show that a key parameter in the observation of the mass effect is whether the surrounding medium is able to support THz acoustic wave propagation, at a frequency close to that of the inorganic vibrating core. At low pressures, surface organic molecules show a single particle-like behavior and a strong mass effect is observed. Upon pressure loading the ligands are compacted together with the surrounding medium and slowly turned into a solid medium that supports THz acoustic phonons. We observe a continuous transition towards a fully embedded NPL with a frequency close to that of a freely vibrating slab and a progressive loss of the mass effect. The quality factor of the detected vibration significantly decreases as a result of the appearance of a "phonon-like" behavior of the environment at the origin of damping and energy dissipation.

14.
Chem Rev ; 116(18): 10934-82, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27434678

RESUMO

In this paper, we review recent progress on colloidal growth of 2D nanocrystals. We identify the four main sources of anisotropy which lead to the formation of plate- and sheet-like colloidal nanomaterials. Defect-induced anisotropy is a growth method which relies on the presence of topological defects at the nanoscale to induce 2D shapes objects. Such a method is particularly important in the growth of metallic nano-objects. Another way to induce anisotropy is based on ligand engineering. The availability of some nanocrystal facets can be tuned by selectively covering the surface with ligands of tunable thickness. Cadmium chalcogenides nanoplatelets (NPLs) strongly rely on this method which offers atomic control in the thinner direction, down to a few monolayers. Two-dimensional objects can also be obtained by post or in situ self-assembly of nanocrystals. This growth method differs from the previous ones in the sense that the elementary objects are not molecular precursors and is a common method for lead chalcogenide compounds. Finally, anisotropy may simply rely on the lattice anisotropy itself as it is common for rod-like nanocrystals. Colloidally grown transition metal dichalcogenides (TMDC) in particular result from such process. We also present hybrid syntheses which combine several of the previously described methods and other paths, such as cation exchange, which expand the range of available materials. Finally, we discuss in which sense 2D objects differ from 0D nanocrystals and review some of their applications in optoelectronics, including lasing and photodetection, and biology.

15.
Nanoscale ; 8(27): 13251-6, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27334524

RESUMO

Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.

16.
Nano Lett ; 16(3): 2047-53, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26863992

RESUMO

Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds. The excited state dynamics are found to be dominated by the slow (∼µs) dynamics of temporary exciton storage in a charge-separated state, previously overlooked. We study the processes of charge carrier separation and exciton recovery in pure CdSe nanoplatelets as well as in core-crown and core-shell CdSe/CdS nanoplatelets with high ensemble quantum yields of 50%, and discuss the implications. Our work highlights the importance of reversible charge carrier trapping and experiments over a wide range of time scales for the understanding of colloidal nanoemitters in general and nanoplatelets in particular.

17.
Nanoscale ; 7(8): 3683-93, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25641562

RESUMO

Nanotower- and nanowall-like indium oxide structures were grown directly on fluorine-doped tin oxide (FTO)/In2O3 seeded substrates and pristine FTO substrates, respectively, by a straightforward solvothermal method. The tower-like nanostructures are proposed to form via a self-assembly process on the In2O3 seeds. The wall-like nanostructures are proposed to form via epitaxial growth from the exposed edges of SnO2 crystals of the FTO substrate. The nanotowers and nanowalls are composed of highly crystalline and ordered nanocrystals with preferred orientations in the [111] and [110] directions, respectively. The two structures display remarkably different activities when used as photoanodes in solar light-driven water splitting. X-ray photoelectron spectroscopy results suggest an increased density of hydroxyl groups in the nanowalls, which results in a decrease of the work function and a concomitant shift in the onset potential of the photocurrent in the linear sweep voltammograms, which is further confirmed by Mott-Schottky and flat-band potential measurements, indicating the importance of hydroxyl content in determining the photoelectrochemical properties of the films. Morphology-controlled, nanostructured transparent conducting oxide electrodes of the kind described in this paper are envisioned to provide valuable platforms for supporting catalysts and co-catalysts that are intentionally tailored for efficient light-assisted oxidation of water and reduction of carbon dioxide.

18.
Nat Commun ; 6: 6086, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597912

RESUMO

Electronic coherence has attracted considerable attention for its possible role in dynamical processes in molecular systems. However, its detection is challenged by inhomogeneous line broadening and interference with vibrational coherences. In particular, reports of 'persistent' coherent exciton superpositions at room temperature remain controversial, as the related transitions give typically shorter optical dephasing times of about 10-20 fs. To rationalize these reported long-lived coherences, several models have been proposed, involving strong correlation in the mechanisms of decoherence or that electronic coherences may be sustained by resonant vibrational modes. Here we report a decisive example of electronic coherence occurring in a chemical system in a 'warm and wet' (room-temperature solution) environment, colloidal semiconductor nanoplatelets, where details are not obscured by vibrational coherences nor ensemble dephasing. Comparing the exciton and optical coherence times evidences a partial correlation of fluctuations underlying dephasing and allows us to elucidate decoherence mechanisms occurring in these samples.

19.
J Am Chem Soc ; 136(40): 14121-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25220034

RESUMO

In recent years, a lot of attention has been devoted to monolayer materials, in particular to transition-metal dichalcogenides (TMDCs). While their growth on a substrate and their exfoliation are well developed, the colloidal synthesis of monolayers in solution remains challenging. This paper describes the development of synthetic protocols for producing colloidal WS2 monolayers, presenting not only the usual semiconducting prismatic 2H-WS2 structure but also the less common distorted octahedral 1T-WS2 structure, which exhibits metallic behavior. Modifications of the synthesis method allow for control over the crystal phase, enabling the formation of either 1T-WS2 or 2H-WS2 nanostructures. We study the factors influencing the formation of the two WS2 nanostructures, using X-ray diffraction, microscopy, and spectroscopy analytical tools to characterize them. Finally, we investigate the integration of these two WS2 nanostructured polymorphs into an efficient photocatalytic hydrogen evolution system to compare their behavior.

20.
J Am Chem Soc ; 134(45): 18591-8, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23057684

RESUMO

We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%.


Assuntos
Compostos de Cádmio/química , Nanoestruturas/química , Compostos de Selênio/química , Sulfetos/química , Compostos de Cádmio/síntese química , Coloides/síntese química , Coloides/química , Tamanho da Partícula , Compostos de Selênio/síntese química , Semicondutores , Sulfetos/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...