Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 165: 114971, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442758

RESUMO

High energy consumption is a critical problem for wastewater treatment systems currently monitored using conventional "single point" probes and operated with manual or automatic open-loop control strategies, exhibiting significant time lag. This challenge is addressed in this study by profiling the variation of three critical water quality parameters (conductivity, temperature and pH) along the depth of a reactor at high spatiotemporal resolution in a real-time mode using flat thin milli-electrode array (MEA) sensors. The profiling accurately captured the heterogeneous status of the reactor under transient shocks (conductivity and pH) and slow lingering shock (temperature), providing an effective dataset to optimize the chemical dosage and energy requirement of wastewater treatment systems. Transient shock models were developed to validate the MEA profiles and calculate mass transfer coefficients. Monte Carlo simulation revealed high-resolution MEA profiling combined with fast closed-loop control strategies can save 59.50% of energy consumption (Temperature and oxygen consumption controls) and 45.29% of chemical dosage, and reach 16.28% performance improvement over the benchmark (defined with ideal conditions), compared with traditional "single-point" sensors that could only monitor the entire system through a single process state. This study demonstrated the capability of MEA sensors to profile reactor heterogeneity, visualize the variation of water quality at high resolution, provide complete datasets for accurate control, and ultimately lead to energy-saving operation with high resilience.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eletrodos
2.
Water Res X ; 4: 100028, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31334492

RESUMO

Novel flexible thin mm-sized resistance-typed sensor film (MRSF) fabricated using ink-jet printing technology (IPT) was developed in this study to monitor water flow rate in pipelines in real time in situ mode. The mechanism of MRSF is that the mm-sized interdigitated electrodes made by printing silver nanoparticles on an elastic polyimide film bend under different flow rates, leading to variation of the resistance of the sensor at different degrees of curvature. Continuous flow tests showed that MRSF possessed a high accuracy (0.2 m/s) and excellent sensitivity (0.1447/ms-1). A model of sensor resistance and flow velocity was established to unfold the correlation between the fundamentals of fluid mechanics and the mechanic flexibility of sensor materials. An analytical model yielded a high coefficient of determination (R2 > 0.93) for the relationship between the resistance increment of the MRSF and the square of the flow velocity at the velocity range of 0.25-2 m/s. Furthermore, a temperature-correction model was developed to quantify the effect of water temperature on the sensor resistance readings. MRSF exhibited a low temperature coefficient of resistance (TCR, 0.001) at the water temperature range of 20-60 °C. Computational fluid dynamics (CFD) simulations using the finite element method were conducted and confirmed both the underlying load assumptions and the deformation characteristics of the sensor film under various flow and material conditions. High-resolution monitoring of water flow rate using MRSF technology was expected to save at least 50% energy consumption for a given unit, especially under flow fluctuation. MRSF possesses a great potential to perform real-time in situ monitoring at high accuracy with ultralow cost, thus enabling the feedback control at high spatiotemporal resolution to reduce the overall energy consumption in water and wastewater systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...